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Abstract. Different eigenspace-based approaches have been proposed for the
recognition of faces. They differ mostly in the kind of projection method been
used and in the similarity matching criterion employed. The aim of this paper
is to present a comparative study between some of these different approaches.
This study considers theoretical aspects as well as simulations performed
using a face database with a few number of classes.

1 Introduction

Among the most successful approaches used in face recognition we can mention
eigenspace-based methods, which are mostly derived from the Eigenface-algorithm.
These methods project the input faces onto a dimensional reduced space where the
recognition is carried out, performing a holistic analysis of the faces. Different
eigenspace-based approaches have been proposed. They differ mostly in the kind of
projection/decomposition method been used and in the similarity matching criterion
employed. The aim of this paper is to present a comparative study between some of
these different approaches. The comparison considers the use of three different
projection methods (Principal Component Analysis, Fisher Linear Discriminant and
Evolutionary Pursuit) and five different similarity matching criteria (Euclidean-,
Cosines- and Mahalanobis-distance, Self-Organizing Map and Fuzzy Feature
Contrast). The pre-processing aspects of these approaches (normalization,
illumination invariance, geometrical invariance, etc.) are not going to be addressed in
this study. It should be noted that a previous comparative study that does not include
the Fuzzy Feature Contrast method was presented in [4]. The mentioned methods are
described in section 2, and the comparative study is presented in section 3.

2 Eigenspace-based Approaches

Eigenspace-based approaches approximate the face vectors (face images) with
lower dimensional feature vectors. The main supposition behind this procedure is that
the face space (given by the feature vectors) has a lower dimension than the image
space (given by the number of pixels in the image), and that the recognition of the
faces can be performed in this reduced space. These approaches consider an off-line
phase or training, where the face database is created and the projection matrix, the
one that achieve the dimensional reduction, is obtained from all the database face
images. In the off-line phase are also calculated the mean face and the reduced



representation of each database image. These representations are the ones to be used
in the recognition process.

2.1 General Approach

Figure 1 shows the block diagram of a generic eigenspace-based face recognition
system. A preprocessing module transforms the face image into a unitary vector and

then performs a subtraction of the mean face ( X). After that, the resulting vector, X, is

rojected using the projection matrix W ORY*™ that depends on the eigenspace
proj g proj

method been used (see section 2.2). This projection corresponds to a dimensional
reduction of the input, starting with vectors x in RN (with N the image vector
dimension) and obtaining projected vectors q in R™ with m<N (usually m<<N). The
Similarity Matching module compares the similarity of the reduced representation of
the query face vector q with the reduced vectors pk OR™ that represent the faces in
the database. By using a given criterion of similarity (see section 2.3), this module
determines the most similar vector pk in the database. The class of this vector is the
result of the recognition process, i.e. the identity of the face. In addition, a Rejection
System for unknown faces is used if the similarity matching measure is not good
enough (see description in [1]).
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Fig. 1. Block diagram of a given eigen-space face recognition system.
2.2 Projection/Decomposition Methods
Principal Components Analysis - PCA

PCA is a general method to identify the principal differences between signals and
after that to make a dimensional reduction of them. Let

X=| (x'-x)x>-%)--(x"T -x) | be the matrix of the normalized training vectors.

x/ represents the normalized j image vector, X is the mean face image and NT is the
number of training images. Then, R = X X' will be the correlation matrix estimator.
The eigenvectors of R represent a special basis in the image space, and the
eigenvalues are the projection variance on each of this axes (the Eigenfaces).
Therefore PCA will chose only the eigenvectors of R associated with the higher



variance and in this way will reduce the dimension of the training images. Also PCA
give us the projection matrix W [J RN*M for reducing every image that follows the
same statistical pattern. Computational aspects of the implementation of this method
are explained in [4].

Fisher Linear Discriminant - FLD

FLD searches for the projection axes on which the face images of different
classes are far from each other, and at the same time where the face images of the
same class are close from each other. In a similar way of PCA using the R matrix,
FLD uses two scatter matrices, Sy and S, for representing the separation between the
individual class means respect to the global mean face, and the separation between
vectors of each class respect to their own class mean, respectively:
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where m is the global mean vector, P(C;) are the occurrence probabilities associated
to each class C,» m" are the average vectors of C,, and x are the vectors

associated to C,. The maximization of the between class scatter and the minimization

of the within class scatter is performed by solving the general eigensystem
S, w* = A, S,, w¥. The resulting non-orthonormal base represents the projection matrix

W ORY*™ where the m rows are the general eigenvectors associated with the largest
general eigenvalues (Fisher Parameters [4]). To solve the problem of the large size of
the scatter matrices, PCA is applied before FLD. In this way we are also solving the
problem of singularity for S,,.

Evolutionary Pursuit - EP

EP, originally proposed in [3], searches for the best set of projection axes in order
to maximize a fitness function that measures, at the same time, the classification
accuracy and generalization ability of the system. Because the dimension of the
solution-space of this problem is very large, it is solved using Genetic Algorithms. In
order to obtain the EP-faces an initial dimensional reduction is first performed using
PCA, and then a Whitening Transformation is applied (equivalent to a Mahalanobis
metric system, see 2.3). In the Whitened-PCA space are performed several rotations
between pair of axes and then a subset of them is selected. Each rotation is coded
using a chromosome representation. In this representation each chromosome
represents a certain projection system. To evaluate this system the following fitness
function is used:

Z(aksai):Za(ak’ai)"')‘zs(ak’ai)’ (2)

where {,(0\,8 ) measures the accuracy, { (a,,d ) measures the generalization
ability, and A is a positive constant (see definitions in [3]).



2.3 Similarity Matching Methods

Euclidean Distance

dx,y) =y (x-y)'(x-y) . 3)
Cosine Distance

T ;

Mahalanobis Distance

d(x,y) = (x - y)T R” (x - y) ; R: correlation matrix. &)

From a geometrical point of view this distance has a scaling effect in the image
space. Taking into consideration the face image subset, directions in which a greater
variance exist are compressed and directions in which a smaller variance exist are
expanded. It can be proved that in the PCA space the Mahalanobis distance is
equivalent to the Euclidean distance, weighting each component by the inverse
correspondent eigenvalue (see demonstration in [4]), and it is often called Whitening
(PCA) Transformation.

SOM Clustering

Self-Organizing Maps (SOMs) are used as associative networks to match the
projected query face with the corresponding projected database faces. The use of a
SOM to implement this module improves the generalization ability of the system. The
SOM approach uses reference vectors m; to approximate the probability distribution
of the faces in a 2D map [2]. In the training phase of the SOM a clustering of the
reduced face vectors is carried out. Thereafter the SOM is transformed in an
associative network by labeling all its nodes. Both procedures are explained in [4].

Fuzzy Feature Contrast — FFC

S(x,y) = imin{ B} -a imax{ 10~ ()0} —Bimax{ B - w0} ©

1=1 =1 1=1
where 1 (x) is a membership function associated with the i-component of vector

x OR™. This similarity measure, originaly proposed in [5], is a fuzzy implementation
of the Feature Contrast model from Tversky. The first sum measure the common
features (intersection) and the others represent the distinctive features (difference in
the two possible ways). The positive parameters o and [3 adjust the contrast of the
three kind of features. By chosing 0#p it is possible to introduce asymetries between



the subject-referent comparison. This model considers that all the features are
independent, and that can be assumed in PCA and WPCA, but not in FLD and EP. In
our implementation we normalize each feature of PCA (in WPCA it is not necessary)

and we chosed ; (x) linear between —1 and 1, with Xx; normalized.

3 Comparison among the approaches

In order to test the described methods we have made several simulations based in
the Yale University - Face Image Database. We use 150 images of 15 different
classes. Then we preprocessed the images by masking them in windows of 100 x 200
pixels placing the several face features in the same relative places. In table 1 we show
the results of several simulations using different kind of representations and similarity
matching methods. For each simulation we used a fixed number of training images,
using the same type of images per class, according with the Yale database
specification. In order to obtain representative results we take the average of 20
different set of images for each fixed number of training images. All the images not
used for training are used for testing.

We can see that the best models always are obtained with the Fisher
representation, and the difference against the other representations decrease when the
number of training images per class decrease, showing that the FLD discrimination
ability strongly depends on the number of training images per class. The best results
are almost always obtained with FLD- cosine. The systems that seem to be as efficient
as FLD-cosine are SOM and Withening-cosine.

The best results using FFC were obtained employing an asymmetric subject-referent
comparison: 0=0.5 =5. This means that in the question “how is the subject face
similar to the referent face?” the answer focus more on the features of the referent (the
unknown face). The generalization ability of the systems is not well measured in our
simulations because the number of selected axes is about the same of the number of
classes (15). That affects the FLD representation method as well as the FFC and SOM
similarity matching methods. For this reason in future works we want to perform our
comparative study on a larger database, like FERET. We think that this will improve
the relative recognition ability of the methods being affected for the small number of
classes.

Another important issue is the computational cost of the training processes. In
PCA this computational cost is mainly due to the process of determining R,

O(NT?[N), and solving the eigensystem, O(NT*). If we suppose that the number
of training images NT is much smaller than the number of pixels per image N, then
the computational cost of PCA is just the cost of determining R, O( NT? [(N). In our
implementation of FLD we requires previously the computation of PCA to reduce the
vectors dimension to m; (M < NT), and the additional cost is due to the process of

determining the scatter matrices, O(m,2 [NC), and solving the general eigensystem,

O(mf). Nevertheless the additional cost in FLD is usually much smaller than the

PCA initial cost. Finally EP requires much more computations because this process
must iterate until a given criterion is accomplished. The computational cost of on-line
operation is mainly given by the comparisons with database vectors, O(NT [n),



except when the SOM-based similarity measure is used, O((number of nodes) [In).
The numerical stability for the different methods depends mostly of the numerical
algorithms used for solving eigensystems. Either in PCA or FLD this is not a critical
problem because always involves the management of symmetric matrices.

Table 1. Mean recognition rates using different numbers of training images per class, and
taking the average of 20 different training sets. The small numbers are the standard deviation of
each recognition rate.

W hitening Whitening Whitening Whitening
im/chss || axes || Euclidean || cogq ?) SOM FFC Eucliden || cog ?) SOM FFC
PCA 56 879 86.0 84.6 771 64.7 79.3 64.7 771
62 6.8 7.0 101 94 116 10.5 101
FISHER 6 17 91.5 91.6 90.3 839 91.9 92.6 92.1 85.6
6.6 6.5 6.7 9.3 58 5.6 6.2 83
E.P. 16 81.2 85.3 83.7 772 - - - -
9.0 8.7 9.8 8.0
PCA 34 88.7 87.1 86.0 785 69.5 83.2 66.1 785
3.8 4.1 5.1 8.1 89 9.0 10.5 8.1
FISHER 5 15 922 91.7 90.3 85.1 923 92.4 92.1 854
57 6.2 6.4 9.1 47 57 53 85
EP. 13 ] 841 87.7 || 867 || 787 - - - -
5.7 6.6 7.6 6.8
PCA 46 873 86.7 84.8 77.6 729 84.4 66.7 77.6
3.9 3.9 3.6 52 55 5.6 6.5 52
FISHER 4 18 903 91.1 90.3 844 90.4 91.0 90.1 829
4.5 5.0 4.4 59 42 4.4 4.7 57
E.P. 18 83.6 86.9 85.0 74.7 - - - -
4.6 4.7 5.0 6.0
PCA 35 86.6 85.4 82.0 779 75.0 84.8 674 779
4.0 39 5.6 4.6 56 54 69 46
FISHER 3 15 89.0 90.4 87.4 80.7 88.9 89.9 88.7 81.5
3.6 4.0 4.0 6.3 31 3.9 39 34
E.P. 14 81.1 86.9 82.5 759 - - - -
4.3 3.7 3.7 4.4
PCA 26 82.7 80.8 76.2 71.1 75.6 82.1 60.8 71.1
59 5.9 7.9 59 49 4.6 7.3 59
FISHER 2 15 81.5 82.2 79.4 693 80.7 82.8 78.8 73.6
56 58 58 86 47 49 58 62
E.P. |l 778 812 || 76.0 |[ 700 - - -
5.6 5.3 7.3 74
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