Skip to main content

Argumentation-Based Proof Procedures for Credulous and Sceptical Non-monotonic Reasoning

  • Chapter
  • First Online:
Computational Logic: Logic Programming and Beyond

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2408))

  • 813 Accesses

Abstract

We define abstract proof procedures for performing credulous and sceptical non-monotonic reasoning, with respect to the argumentation-theoretic formulation of non-monotonic reasoning proposed in [1]. Appropriate instances of the proposed proof procedures provide concrete proof procedures for concrete formalisms for non-monotonic reasoning, for example logic programming with negation as failure and default logic. We propose (credulous and sceptical) proof procedures under different argumentation-theoretic semantics, namely the conventional stable model semantics and the more liberal partial stable model or preferred extension semantics. We study the relationships between proof procedures for different semantics, and argue that, in many meaningful cases, the (simpler) proof procedures for reasoning under the preferred extension semantics can be used as sound and complete procedures for reasoning under the stable model semantics. In many meaningful cases still, proof procedures for credulous reasoning under the preferred extension semantics can be used as (much simpler) sound and complete procedures for sceptical reasoning under the preferred extension semantics. We compare the proposed proof procedures with existing proof procedures in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-theoretic framework for default reasoning. Artificial Intelligence, 93:63–101, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Dimopoulos, A. C. Kakas, Logic Programming without Negation as Failure, Proceedings of the 1995 International Symposium on Logic Programming, pp. 369–383, 1995.

    Google Scholar 

  3. Y. Dimopoulos, B. Nebel, F. Toni, Preferred Arguments are Harder to Compute than Stable Extensions, Proc. of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, (T. Dean ed.), pp. 36–43, 1999.

    Google Scholar 

  4. Y. Dimopoulos, B. Nebel, F. Toni, Finding Admissible and Preferred Arguments Can Be Very Hard, Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning, KR 2000, (A. G. Cohn, F. Giunchiglia, B. Selman eds.), pp. 53–61, Morgan Kaufmann Publishers, 2000.

    Google Scholar 

  5. P. M. Dung, Negation as hypothesis: an abductive foundation for logic programming. Proceedings of the 8th International Conference on Logic Programming, Paris, France (K. Furukawa, ed.), MIT Press, pp. 3–17, 1991.

    Google Scholar 

  6. P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games Artificial Intelligence 77:321–357, Elsevier, 1993.

    Article  MathSciNet  Google Scholar 

  7. P. M. Dung, R. A. Kowalski, F. Toni, Synthesis of proof procedures for default reasoning, Proc. LOPSTR’96, International Workshop on Logic Program Synthesis and Transformation, (J. Gallagher ed.), pp. 313–324, LNCS 1207, Springer Verlag, 1996.

    Google Scholar 

  8. P. M. Dung, R. A. Kowalski, F. Toni, Proof procedures for default reasoning. In preparation, 2002.

    Google Scholar 

  9. K. Eshghi, R. A. Kowalski, Abduction compared with negation as failure. Proceedings of the 6th International Conference on Logic Programming, Lisbon, Portugal (G. Levi and M. Martelli, eds), MIT Press, pp. 234–254, 1989

    Google Scholar 

  10. M. Gelfond, V. Lifschitz, The stable model semantics for logic programming. Proceedings of the 5th International Conference on Logic Programming, Washington, Seattle (K. Bowen and R. A. Kowalski, eds), MIT Press, pp. 1070–1080, 1988

    Google Scholar 

  11. K. Inoue, M. Koshimura, R. Hasegawa, Embedding negation as failure into a model generation theorem-prover. Proc. CADE’92, pp. 400–415, LNCS 607, Springer, 1992.

    Google Scholar 

  12. A. C. Kakas, R. A. Kowalski, F. Toni, The role of abduction in logic programming. Handbook of Logic in Artificial Intelligence and Logic Programming (D.M. Gabbay, C.J. Hogger and J.A. Robinson eds.), 5: 235–324, Oxford University Press, 1998.

    Google Scholar 

  13. A. C. Kakas, P. Mancarella. Preferred extensions are partial stable models. Journal of Logic Programming 14(3,4), pp. 341–348, 1993.

    MathSciNet  Google Scholar 

  14. A. C. Kakas, P. Mancarella, P. M. Dung, The Acceptability Semantics for Logic Programs, Proceedings of the Eleventh International Conference on Logic Programming, pp. 504–519, 1994.

    Google Scholar 

  15. A. C. Kakas, F. Toni, Computing Argumentation in Logic Programming. Journal of Logic and Computation 9:515–562, Oxford University Press, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. McCarthy, Circumscription-a form of non-monotonic reasoning. Artificial Intelligence, 1327–39, 1980.

    Google Scholar 

  17. D. McDermott, Nonmonotonic logic II: non-monotonic modal theories. Journal of ACM 29(1), pp. 33–57, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Moore, Semantical considerations on non-monotonic logic. Artificial Intelligence 25:75–94, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Niemelä, Towards efficient default reasoning. Proc. IJCAI’95, pp. 312–318, Morgan Kaufman, 1995.

    Google Scholar 

  20. I. Niemelä, P. Simons, Efficient implementation of the well-founded and stable model semantics. Proc. JICSLP’96, pp. 289–303, MIT Press, 1996.

    Google Scholar 

  21. J. L. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.

    Article  Google Scholar 

  22. D. Poole, A logical framework for default reasoning. Artificial Intelligence 36:27–47, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible priorities. Artificial Intelligence Today, (M. Wooldridge and M. M. Veloso, eds.), LNCS 1600, pp. 365–379, Springer, 1999.

    Chapter  Google Scholar 

  24. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. Handbook of Philosophical Logic, 2nd edition, (D. Gabbay and F. Guenthner eds.), Vol. 4, Kluwer Academic Publishers, 2001.

    Google Scholar 

  25. R. Reiter, A logic for default reasoning. Artificial Intelligence 13:81–132, Elsevier, 1980).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Saccà, C. Zaniolo, Stable model semantics and non-determinism for logic programs with negation. Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM Press, pp. 205–217, 1990.

    Google Scholar 

  27. K. Satoh, A top-down proof procedure for default logic by using abduction. Proceedings of the Eleventh European Conference on Artificial Intelligence, pp. 65–69, John Wiley and Sons, 1994.

    Google Scholar 

  28. K. Satoh and N. Iwayama. A Query Evaluation Method for Abductive Logic Programming. Proceedings of the Joint International Conference and Symposium on Logic Programming, pp. 671–685, 1992.

    Google Scholar 

  29. G.R. Simari and R.P. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 52:125–257, 1992.

    Article  MathSciNet  Google Scholar 

  30. M. Thielscher, A nonmonotonic disputation-based semantics and proof procedure for logic programs. Proceedings of the 1996 Joint International Conference and Symposium on Logic Programming (M. Maher ed.), pp. 483–497, 1996.

    Google Scholar 

  31. F. Toni, Argumentation-theoretic proof procedures for logic programming. Technical Report, Department of Computing, Imperial College, 1997.

    Google Scholar 

  32. G. Vreeswijk. The feasibility of defeat in defeasible reasoning. Proceedings of the 2nd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’91), (J.F. Allen, R. Fikes, E. Sandewall, eds.), pp. 526–534, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dung, P.M., Mancarella, P., Toni, F. (2002). Argumentation-Based Proof Procedures for Credulous and Sceptical Non-monotonic Reasoning. In: Kakas, A.C., Sadri, F. (eds) Computational Logic: Logic Programming and Beyond. Lecture Notes in Computer Science(), vol 2408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45632-5_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45632-5_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43960-8

  • Online ISBN: 978-3-540-45632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics