Abstract
Several years of research have suggested that the accuracy of spoken document retrieval systems is not adversely affected by speech recognition errors. Even with error rates of around 40%, the effectiveness of an IR system falls less than 10%. The paper hypothesizes that this robust behavior is the result of repetition of important words in the text—meaning that losing one or two occurrences is not crippling- and the result of additional related words providing a greater context- meaning that those words will match even if the seemingly critical word is misrecognized. This hypothesis is supported by examples from TREC’s SDR track, the TDT evaluation, and some work showing the impact of recognition errors on spoken queries.
The field of Information Retrieval naturally includes myriad other research issues, ranging from formal modeling of the problem to engineering systems that work across languages, from document clustering to multi-document summarization, and from classification to question answering. In this paper I will focus on search engine technology, though many of the ideas and directions apply equally well to other IR research problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Allan, H. Jin, M. Rajman, C. Wayne, D. Gildea, V. Lavrenko, R. Hoberman, and D. Caputo. Topic-based novelty detection: 1999 summer workshop at CLSP, final report. Available at http://www.clsp.jhu.edu/ws99/tdt, 1999.
James Allan, editor. Topic Detection and Tracking: Event-based News Organization. Kluwer Academic Publishers, 2001.
J. Barnett, S. Anderson, J. Broglio, M. Singh, R. Hudson, and S.W. Kuo. Experiments in spoken queries for document retrieval. In Proceedings of Eurospeech, volume 3, pages 1323–1326, 1997.
Jaime Carbonell, Yiming Yang, John Lafferty, Ralf D. Brown and Tom Pierce, and Xin Liu. CMU report on TDT-2: Segmentation, detection and tracking. In Proceedings of the DARPA Broadcast News Workshop, pages 117–120. Morgan Kauffman Publishers, 1999.
F. Crestani. Word recognition errors and relevance feedbackin spoken query processing. In Proceedings of the 2000 Flexible Query Answering Systems Conference, pages 267–281, 2000.
J. Garofolo, J. Lard, and E. Voorhees. 2000 TREC-9 spoken document retrieval track, 2001. Powerpoint presentation at http://trec.nist.gov.
J. Garofolo, E. Voorhees, V. Stanford, and K. Sparck Jones. TREC-6 1997 spoken document retrieval tracko verview and results. In Proceedings of TREC-6 (1997), pages 83–92, 1998. NIST special publication 500-240.
J.S. Garofolo, C.G.P. Auzanne, and E.M. Voorhees. The TREC spoken document retrieval track: A success story. In Proceedings of TREC-8 (1999), 2000. NIST special publication 500–246.
J.S. Garofolo, E.M. Voorhees, C.G.P. Auzanne, V.M. Stanford, and B.A. Lund. 1998 TREC-7 spoken document retrieval track overview and results. In Proceedings of TREC-7 (1998), pages 79–89, 1998. NIST special publication 500-242.
P. Kantor and E. Voorhes. Report on the TREC-5 confusion track. In Online proceedings of TREC-5 (1996), pages 65–74, 1997. NIST special publication 500-238.
R. Krovetz. Word Sense Disambiguation for Large Text Databases. PhD thesis, University of Massachusetts, 1995.
A. Singhal, J. Choi, D. Hindle, and F. Pereira. AT&T at TREC-6: SDR track. In Proceedings of TREC-6 (1997), pages 227–232, 1998. NIST special publication 500-240.
P. van Mulbregt, I. Carp, L. Gillick, S. Lowe, and J. Yamron. Segmentation of automatically transcribed broadcast news text. In Proceedings of the DARPA Broadcast News Workshop, pages 77–80. Morgan Kauffman Publishers, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allan, J. (2002). Perspectives on Information Retrieval and Speech. In: Coden, A.R., Brown, E.W., Srinivasan, S. (eds) Information Retrieval Techniques for Speech Applications. IRTSA 2001. Lecture Notes in Computer Science, vol 2273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45637-6_1
Download citation
DOI: https://doi.org/10.1007/3-540-45637-6_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43156-5
Online ISBN: 978-3-540-45637-7
eBook Packages: Springer Book Archive