Extraction of Abstraction Invariants for Data
Refinement*

Marielle Doche and Andrew Gravell

Department of Electronics and Computer Science
University of Southampton, Highfield
Southampton SO17 1BJ, United-Kingdom
marielle.doche@libertysurf.fr, amg@ecs.soton.ac.uk

Abstract. In this paper, we describe an approach to generating abstrac-
tion invariants for data refinement from specifications mixing B and CSP
notations. A model-checker can be used to check automatically refine-
ment of the CSP parts. However, we need to translate the CSP into B
in order to verify data refinement of the whole specification. The Csp2B
tool generates the B specification automatically from the CSP parts.
Our proposal is to generate in addition the abstraction invariants, by
analysing the labelled transition systems provided by a model-checker.
The approach is illustrated with a case study in which a simple dis-
tributed information system is specified and two refinements are given,
both of which have been fully verified using the proposed combination of
model-checking with theorem proving (both automatic and interactive).

Keywords: Formal specification, CSP, failure refinement, B, data re-
finement, distributed system

1 Introduction

To improve the specification and the validation of complex systems, lots of re-
cent research concerns the integration of two different formal notations to use
the advantages of each. For example, in [But99,MS98 FW99,MC99,DS00] the
authors combine a behaviour-based notation (CSP) with a model-based one (B,
Z or Object-Z). Indeed the B method [Abr96] or the Z notation [Spi92] are suit-
able for modelling distributed systems, but the sequencing of events is difficult
to specify. The CSP language [Hoa85] solves this problem more easily.

The work presented in this paper is based on the Csp2B approach [But99].
In that paper, Butler describes how to combine specifications in CSP and in B,
and how to derive automatically B specifications from these combinations. This
approach can be applied to derived B machines or B refinements. He also proves
that, if they do not share variables, the composition of a CSP and a B specifica-
tions is compositional with respect to the data refinement process, which allows

* We acknowledge the support of the EPRSC (GR/M91013) for the ABCD project
(http://www.dsse.ecs.soton.ac.uk/ABCD/).

us to refine independently each part. Although it is easy to check refinement of
the CSP subpart with a model-checker such as FDR [For97], in a lot of cases,
however, we cannot prove refinement of the B subpart on its own, because this in
fact depends on the state of the CSP subpart. In such cases, we need to generate
from the CSP and B subparts a B machine and its refinement, which can then
be verified.

The classical approach to refinement with the B method is data refinement
[Abr96] which can be supported by theorem provers such as AtelierB [Ste96] or
the B-Toolkit [B-C99]. In data refinement, however, we need to define abstrac-
tion invariants that link the variables of the abstract machine with those of the
concrete one. This step is often based on the intuition of the specifier and it is
difficult to achieve.

In this paper, we propose an approach for reducing the difficulty of this task
by generating automatically the abstraction invariants that relate to the CSP
subparts. First the FDR tool is used to check refinement of the CSP subparts
alone. To do this, it constructs a labelled transition system (LTS). The LTS can
be extracted from FDR and used to generate abstraction invariants in B. These
can then be conjoined with the abstraction invariants relating to the B subparts.

The following section introduces our example and the Csp2B approach. We
discuss some proof issues and when our approach can be applied in section 3.
Section 4 describes our approach on a simple case of data refinement. A more
complex case, with parallel decomposition, is given in section 5.

2 Csp2B approach on our example

Our work is based on the Csp2B approach proposed by Butler [But99]. The
idea of this approach is to increase the descriptive power of B specifications (B
machines or B refinements) with the inclusion of CSP processes, which describe
the order of events. Moreover, the Csp2B tool automatically translates the CSP
processes into B language which can then be checked with a B prover (Atelier
B or the B-Toolkit).

2.1 Basic Example

A customer requests some tokens (typically some data, a pension,..) at an office
and then collects them at the same office. This is expressed in Csp2B by:

MACHINE Tokens
SEES TokensDef

ALPHABET
ReqTokens(off:OFFICE)

toks <« CollTokens(off:OFFICE)

PROCESS C(Customers = Await
CONSTRAINS ReqTokens(off) CollTokens(off) WHERE

Await = ReqTokens?off — Transact (off)

Transact (off-ab : OFFICE) = CollTokens.off-ab — Await
END

END

Here — is the classical prefixing operator of CSP, the event ReqT okens has an
input parameter ?of f , the event CollT okens has a 'dot’ parameter .off_ab which
means it accepts as input only the value of off—-ab. The CONSTRAINS clause
allows us to constrain only a subset of the alphabet or some of the parameters (in
this example, the input parameter of the event CollTokens is constrained, but
not its output). The declaration Customers = Await defines the initial state
of the process Customers. This Csp2B description can see the contents of the
following B machine, where home is a function which associates a home office
to each customer (here there are three customers):

MACHINE TokensDef

SETS
HOME = {01, 02, CENTRE}

CONSTANTS
home, OFFICE, initTokens

PROPERTIES
OFFICE = HOME - {CENTRE} A
initTokens € IN A initTokens = 6 N
home € N — HOME A home = {1 — 01,2 — 02, 3 +— CENTRE}

END

Then, the Csp2B tool [But99] translates the constraints on the order of
events:

— for each CSP process, a new set and new variables are introduced in the B
machine to manage the state of the process;

— each CSP event becomes a B operation, guarded by the state variables (using
the B SELECT statement).

For our example, we obtain a set CustomersState with the values Await
and Transact. Two variables are introduced: Customers and off-ab. The tool
generates the following B machine:

MACHINE Tokens
SEES TokensDef

SETS
CustomersState = { Await, Transact}

VARIABLES
Customers,off-ab

INVARIANT
Customers € CustomersState A off-ab € OFFICE

INITIALISATION
Customers := Await ||
ANY new-off-ab WHERE
new_off-ab € OFFICE THEN off-ab := new_off-ab END

OPERATIONS

ReqTokens(off) =
PRE off € OFFICE THEN
SELECT Customers = Await THEN
Customers := Transact || off-ab := off
END
END ;

toks — CollTokens(off) =
PRE off € OFFICE THEN
SELECT Customers = Transact A off = off—-ab THEN
Customers := Await
END
END

END

2.2 Conjunction

Moreover, a Csp2B machine M may constrain the order of the operations of an
already defined B machine MActs. This is defined in the Csp2B description by

the clause CONJOINS MActs, and for each event Op of the Csp2B description,
the B machine MActs contains an operation Op_Act with the same interface.

In our example, the B machine TokensActs specifies the amount of tokens
available for the customer in the system:

MACHINE TokensActs
SEES TokensDef

VARIABLES
tokens

INVARIANT
tokens € IN

INITIALISATION
tokens := initTokens

OPERATIONS
ReqTokens_Act(off) = PRE off € OFFICE THEN skip END ;

toks «— CollTokens_Act(off) =
PRE off € OFFICE THEN
IF tokens =0 THEN tokens := 0 || toks :== 0
ELSE
ANY tok WHERE tok: (1 .. tokens) THEN
tokens := tokens - tok || toks := tok
END
END
END

END

The Csp2B tool generates a B machine M from the Csp2B description as
previously, but the B machine M includes the B machine MActs. Now, each
operation Op contains a guarded call to the operation Op_Act of the machine
MActs . Indeed, if Op_Csp is the B statement for the operation Op generated
from the Csp2B description we obtain:

Op= Op_Csp || SELECT grd(Op-Csp) THEN Op_Act END

We generate the following B machine (the beginning is the same as previ-
ously):

MACHINE Tokens
SEES TokensDef
INCLUDES TokensActs

DEFINITIONS
grd_Tokens_CollTokens(off)J== (Customers= Transact N off=off-ab);
grd_Tokens_ReqTokens(off)== (Customers=Await)

OPERATIONS

ReqTokens(off) =
PRE off € OFFICE THEN
SELECT grd_Tokens-ReqTokens(off)
THEN ReqTokens_Act(off)
END
I
SELECT Customers = Await
THEN Customers := Transact || off-ab := off
END
END ;

toks — CollTokens(off) =
PRE off € OFFICE THEN
SELECT grd_Tokens_CollTokens(off)
THEN toks «— CollTokens_Act(off)
END
I
SELECT Customers = Transact A off = off-ab
THEN Customers := Await
END
END

END

2.3 Data refinement

This same approach can be applied to produce a B refinement, which can be ver-
ified entirely in B with one of the B provers (Atelier B [Ste96] or the B-Toolkit
[B-C99)).

The classical approach to data refinement in B involves introducing concrete
variables and extra (hidden) operations. Moreover, to check data refinement, we

need to define some abstraction invariants to link the abstract variables with the
concrete ones.

The following refinement is defined to refine the previous TokensActs ma-
chine. Here we give some hints on the internal structure of our system: it is
composed of two offices (O and 02) and a Centre. The tokens about the cus-
tomer can be held by any of the offices or the centre, thus we introduce the
new variables otokens and ctokens. The abstraction invariant tokens = ctokens
+ otokens(O1) 4+ otokens(O2) means that the global amount of tokens for a
customer is the sum of the tokens at the centre and both the offices.

Moreover we introduce new operations to describe the internal communica-
tions between the centre and the offices. A customer requests some data at an
office (operation ReqTokens_Act). If this office holds the data, the customer
directly collects them (CollTokens_Act), else the office requests the data from
the centre (ReqOff_Act). If the centre holds the data, it sends them to the
office (SendOff_Act), else it requests and receives them from the home office of
the customer (QueryHome_Act and RecHome_Act), where the home office
of our customer is defined by the home function in the machine TokensDef. An
original description, and some models of this example in different formalisms are
given in [HBC199].

REFINEMENT TokensRefActs
REFINES TokensActs

SEES TokensDef

VARIABLES
otokens, ctokens

INVARIANT
ctokens € IN A otokens € OFFICE — IN A
tokens = ctokens + otokens(O1) + otokens(02)

INITIALISATION
ctokens := initTokens || otokens := OFFICE x { 0}

OPERATIONS
ReqTokens_Act(off) = PRE off € OFFICE THEN skip END;
toks — CollTokens_Act(off) =

PRE off € OFFICE THEN
otokens(off) := 0 || toks := otokens(off)

END:;

SendOff_Act(off) =
PRE off € OFFICE THEN
ctokens := 0 || otokens(off) := otokens(off) + ctokens
END:;

RecHome_Act(off) =
PRE off € OFFICE THEN
otokens(off) := 0 || ctokens := ctokens + otokens(off)
END:

ReqOff_Act(off) =
PRE off € OFFICE THEN
SELECT otokens(off) =0 THEN skip END
END:

QueryHome_Act(off) =
PRE off € OFFICE THEN
SELECT ctokens = 0 A home(1l) = off THEN skip END
END

END

Unfortunately, it is not possible to prove that TokensRefActs refines Token-
sActs: in the case where tokens>0 and otokens(off)=0 the concrete operation
CollTokens_Act does not refine the abstract one. We need more information
on the evolution of the variables ctokens and otokens.

The following Csp2B specification describes the order of the events.! Here O
is the external choice of Csp2B.

REFINEMENT TokensRef
REFINES Tokens

SEES TokensDef
CONJOINS TokensRefActs

ALPHABET
ReqTokens(off: OFFICE)
toks < CollTokens(off:OFFICE)

! In practice we cannot include a B refinement in a B machine. Thus in this example,
the conjoined B specification TokensRefActs is the transcription of the previous
B refinement example in a B abstract machine. The abstraction invariant already
defined will be introduced in the generated B refinement.

SendOff(off: OFFICE)
RecHome(off: OFFICE)
ReqOff(off: OFFICE)
QueryHome(off: OFFICE)

PROCESS System = Asleep
CONSTRAINS ReqTokens(off) CollTokens(off) SendOff(off)
RecHome(off) ReqOff(off) QueryHome(off) WHERE

Asleep = ReqTokens?off — Request (off)

Request (off co :OFFICE) =
IF otokens(off-co) > 0
THEN CollTokens.off-co — Asleep END
O ReqOff.off-co — Answer

Answer =
IF not(off-co=home(1)) THEN (QueryHome.home(1)
— RecHome.home(1) — SendOff.off-co — Collect)
ELSE (SendOff.off-co — Collect)
END

Collect = CollTokens.off-co — Asleep
END

END

This description can be compiled by the Csp2B tool to produce a B re-
finement of the machine Tokens. The tool produces a new set SystemState = {
Asleep, Request, Answer, Answer_1, Answer_2, Collect } and new variables off-co
and System. In this example, the process Answer contains some implicit states
(indeed between the events QueryHome.home(l) and RecHome.home(1) and
the events RecHome.home(1) and SendOf f.of f_co). For these implicit states,
the Csp2B tool generates then some fresh names (the name of the process fol-
lowed by an underscore character and a number).

Unfortunately, the tool does not define abstraction invariants to link these

new variables with the concrete ones. This must be done manually, which can
be difficult in some cases.

3 Discussion

In this section, we are going to discuss the different cases of refinement checking,
and when the approach we propose in the sequel can be used.

Figure 1 summarises the Csp2B approach: a Csp description M _C'SP is de-
fined which may conjoin a B machine M _Act. The Csp2B tool generates auto-
matically a B machine M. The same approach is applied to define a machine R
which is a refinement of M.

M-CSP M-Act v M

| .
| . .
I : :
s : E : E
= F | D CSP2B tool D
v v v
R-CSP > R-Act N R
CSP machines Conjoined B machines Generated B machines

Fig. 1. Csp2B process

To check refinement, three cases are possible:

— there are no conjoined B machines,
— the conjoined B machine M _Act is refined by R_Act,
— we cannot prove that M _Act is refined by R_Act (see our first example)

3.1 Without conjoined machines

Morgan [Mor90] has defined a correspondence between action systems and CSP.
In [WM90] the authors have established a correspondence between failures-
divergences refinement and simulation for action systems. Butler [But97] has
extended this result to the B machine. A machine Concrete simulates a machine
Abstract if Concrete is a data refinement of Abstract and some progress and
non divergence conditions are verified on Concrete. Thus in theory, if we have
proved failures refinement on a CSP specification, we do not need to prove data
refinement on its translation (failures refinement is sufficient because at present
data refinement with B does not consider hidden events and divergence).

3.2 Refinement between conjoined machine is proved

In [But99], Butler has shown that, if the CSP machine doesn’t refer the state
variables of the conjoined B machine, the parallel operator used to generate
the B operations is monotonic with respect to refinement. This allows us to
refine independently conjoined B machines and CSP processes. In this case, if

M_CSPCr R.CSP and M_Act Cp R_Act then M Cp R.

If the CSP machine refers to variables of the conjoined B machine, as in our
second example, section 5, this result is not valid and the refinement must be
proved on the generated B machines. In such a case we can apply our following
proposed approach to generate some of the abstraction invariants.

3.3 Refinement between conjoined machine is not proved

In this case, we have to prove refinement of the generated B machine (see our
first example in sections 2.3 and 4), with some abstraction invariants.

However, when the CSP machines do not refer to variables of the conjoined
machines, we can reduce the proof task. In such a case, the parallel operator is
monotonic with respect to data refinement, thus the CSP part can be refined
independently. Our proposed approach generates abstraction invariants that are
independent of the variables of the conjoined B machine, and hence are obviously
preserved by this part. Thus in this case, the proof obligations regarding our
generated abstraction invariants can easily be discharged.

4 Simple data refinement

The aim of this paper is to propose an automatic approach to defining abstraction
invariants for the state variables introduced by the Csp2B tool. This approach
is based on the analysis of the Labelled Transition Systems (LTS) built from the
Csp2B descriptions. Such LTS can easily be obtained with a model-checker like
FDR [For97].

4.1 Proposed approach

Refinement mapping. The FDR tool provides easily and automatically three
kinds of checks, increasing in strength:

1. Trace refinement: all possible sequences of events for the implementation are
possible sequences for the specification.

2. Fuailures refinement: any failure of the implementation (indeed a pair formed
by a finite trace of events and the set of refused events after this trace) is a
failure of the specification.

3. Divergence refinement: any failure of the implementation is a failure of the
specification and any divergence of the implementation (when it repeats
infinitely often an event) is a divergence of the specification.

Failures refinement, quickly checked with the FDR tool, is a necessary condi-
tion for data refinement (indeed B refinement checking does not currently allow
to detect divergence of a system).

To make these checks, the tool builds a LTS for the specification and one for
the implementation and considers inductively pairs of nodes from the abstract
LTS and the concrete one (for more details see [For97,Ros97]). Thus, in case of
trace refinement, we can define a relation between abstract states and concrete
ones. In [AL91], Abadi and Lamport show that if a concrete transition system
refines an abstract one, there is a mapping from the state space of the concrete
transition system to the state space of the abstract one, if necessary by adding
auxiliary variables.

Formally, we call M : Yo — X4 the refinement mapping, where Y and
X4 are the sets of nodes respectively of the concrete LTS and of the abstract
LTS. dom(M) and ran(M) are respectively the domain and the codomain of M.
Given a in ran(M), we denote by M ~!(a) the set of nodes of X¢ which have a
as image by M:

M~Ya) = {c|c € dom(M) A M(c) = a}

In practice, such refinement mappings can be easily obtained with state space
reduction algorithms [For97,Ros97]: for any node n of the concrete LTS, we group
with n all the nodes reachable from n by an internal event. All these nodes have
the same image by M, which can be computed inductively from the initial state.

Acceptance sets. Moreover, the FDR tool provides for each node of an LTS
the acceptance set, the set of events the node must accept. If trace refinement is
verified, the acceptance set of a concrete node is included in the acceptance set
of the corresponding abstract node union the set of hidden events (the events or
operations present only in the concrete LTS). If failures refinement is verified,
we can be sure that for a concrete node if the set is empty, the set of the corre-
sponding abstract node is also empty (since the deadlocks of the implementation
are deadlocks of the specification).

The refinement mapping between the LTS provided by FDR and the accep-
tance sets are our starting point for defining the B abstraction invariants.

For any node n of an LTS, we call G(n) the acceptance set of n. We extend
this notation to several nodes : G(ni,...,ng) = G(ni) U ... U G(ng). So, for
a € ran(M) we obtain:

GM)= |J Gl
ceM—1(a)

Failures refinement ensures that if G(M~1(a)) is empty then G(a) is also
empty.
If we call H the set of hidden events, trace refinement ensures:

Ve e Yo, Gle) CG(M(c)) UH

Finally for any event e, we denote by grd(e) the guard of this event, the
condition under which e is enabled, expressed by a predicate.

Abstraction invariant. For each node of X' 4, we define an invariant.

For the abstract LTS, in a node a € X4, at least one guard of an event of
G(a) is satisfied. This means that \/ cq(, grd(e) is true.

If a € ran(M), the refinement mapping ensures that at least one of the guard
of an event of G(M ~!(a)) is also satisfied. For each a € ran(M), we define thus
an invariant :

(\ grde)=(\/ grd(f)

e€G(a) feEG(M~1(a))

If a € (¥4 —ran(M)), this node is not an image of a concrete one, so it can
never be reached in the concrete model. So we define an invariant:

-\ grd(e))

e€G(a)

In practice, the Csp2B tool computes the guards of each CSP event as pred-
icates (see for example grd_Tokens_ReqTokens(off) in the B machine Tokens of
section 2.1).

4.2 Results on our example

Figure 2 shows the concrete LTS directly produced by the FDR model-checker,
respectively from the CSP description Tokens and TokensRef. The dotted ovals
and lines show the refinement mapping. The dashed arrows are internal, or hid-
den, events.

In the following table we give for each node of the abstract LTS Tokens, the
acceptance G(a), the set M ~1(a), and the set G(M~1(a)):

a|G(a) M~Ya) |G(M~(a))
0/ReqTokens(01)|0 ReqTokens(0O1) ReqTokens(02)
ReqTokens(02)
1|CollTokens(O1)|1, 7, 8 CollTokens(O1) ReqOff(O1) SendOff(O1)
2|CollTokens(02)2, 3, 4, 5, 6/CollTokens(02) ReqOff(02) SendOff(02)
QueryHome(home(1)) RecHome(home(1))

The set of hidden events is:

H = {ReqOf f(01), ReqOf f(02),SendOf f(O1), SendO f f(02),
QueryHome(O1), QueryHome(02), RecHome(01), RecHome(02)}

We can then generate the three following invariants:

((grd_-Tokens_ReqTokens(01) V grd_Tokens_ReqTokens(02)) =
(grd_TokensRef-ReqTokens(0O1) V grd_TokensRef-ReqTokens(02)))
N
(grd-Tokens_CollTokens(01) =

A

" Sendoff(02)

Sendoff(01)

SendOff(oz)

~
=
5

=

[}

:
o
T

z

[

2

o

@Home - ‘

Fig. 2. Abstract and concrete LTS

(grd_TokensRef_-CollTokens(0O1) or grd_TokensRef-ReqOff(0O1)
V grd_TokensRef-SendOff(01)))
(grd-Tokens_CollTokens(02) =

(grd_TokensRef-CollTokens(02) or grd_TokensRef-ReqOff(02)
V grd_TokensRef-SendOff(02) or grd_TokensRef-QueryHome(home(1))

V grd_TokensRef-RecHome(home(1))))

Unfortunately, these invariants and the one defined in the section 2.3 (tokens
= ctokens + otokens(O1) + otokens(0O2)) are not sufficient to prove in B that
the B refinement TokensRef refines the B machine Tokens. We have the same
problem with the CollTokens operation as in our example of the section 2.3.

Indeed, the previous approach provides only invariants on the variables intro-
duced by Csp2B. We need to add the following invariants, which give conditions
on the amount of tokens in different states, for example the first one expresses
that when the home office has send the tokens to the centre, there are no more
tokens at the home office:

((Customers = Answer_2) = otokens(home(1)) = 0)

N

((Customers = Collect V Customers = Answer_1) = ctokens = 0)
N

((= (Customers = Collect) V off-1=01) = otokens(02) = 0)
N

((Customers = Collect \ off-1 = O2 A tokens>0) = otokens(02) >0)

With these additional invariants added by hand, it is possible to verify the
refinement completely. In this verification, 181 proof obligations were generated
with the AtelierB tool, of which 36 were proved manually, the others automati-
cally.

5 Parallel decomposition

The previous step of refinement has shown different parts in our system:

— a single Centre,

— some Offices, which can be the home-office of a customer.

A new step of refinement implements this decomposition: in a B refinement
we include a machine for each part and we define operations as interactions of
the operations of each part. For example the B refinement TokensRefRefActs
includes the B machine Centre and Offices (with the renaming in ce and oo
respectively):

REFINEMENT TokensRefRefActs
REFINES TokensRefActs
SEES TokensDef
INCLUDES ce.Centre, oo.Offices
INVARIANT
ctokens = ce.ctokens A
otokens(O1) = oo.otokens(O1) A otokens(02) = oo.otokens(O2)
OPERATIONS
ReqTokens_Act(off) = oo.ReqTokens(off) ;

toks <+ CollTokens_Act(off) = toks < oo.CollTokens(ofj) ;

ReqOff_Act(off) =
PRE off € OFFICE THEN ce.ReqOff(off) || oo.ReqOff(off) END;

SendOff_Act(off) =
PRE off € OFFICE THEN
ce.SendOff(off) || 00.SendOff(off, ce.ctokens)
END:

END

In a Csp2B notation we can express decomposition as a parallel composition
of several processes:

REFINEMENT TokensRefRef
REFINES TokensRef
SEES TokensDef
CONJOINS TokensRefRefActs
ALPHABET
ReqTokens(off:OFFICE)
toks <« CollTokens(off:OFFICE)
SendOff(off: OFFICE)

RecHome(off: OFFICE)
ReqOff(off: OFFICE)

QueryHome(off: OFFICE)

PROCESS C(entre = CentreAsleep

CONSTRAINS SendOff(off) RecHome(off)
ReqOff(off) QueryHome(off)

WHERE

CentreAsleep = ReqOff ?off — CentreAnswer(off)

CentreAnswer(ce_off : OFFICE) =
IF not(ce_off=home(1)) THEN (QueryHome.home(1)
— RecHome.home(1) — SendOff.ce_off — CentreAsleep)
ELSE (SendOff.ce_off — CentreAsleep)
END
END

PROCESS Offices = OfficeAsleep
CONSTRAINS ReqTokens(off) CollTokens(off)

SendOff(off) ReqOff(off)
WHERE

OfficeAsleep = ReqTokens?off — OfficeRequest (off)

OfficeRequest(oo_off : OFFICE) =
IF otokens(oo_off) > 0
THEN CollTokens.oo-off — OfficeAsleep END
O ReqOff.oo-off — SendOff.oo_off —
CollTokens.oo_off — Office Asleep

PROCESS Home = HomeAsleep
CONSTRAINS RecHome(off) QueryHome(off)
WHERE

HomeAsleep = QueryHome?off — HomeRequest (off)

HomeRequest(ho_off : OFFICE) =
RecHome. (ho-off — HomeAsleep
END

END

We can apply exactly the same approach as with simple data refinement: we
define a refinement mapping between the concrete and the abstract LTSs, and
then we build the abstraction invariant from this mapping and the acceptance
sets.

For our example, we obtain for TokensRefRef the same LTS as with Token-
sRef (indeed the FDR tool proves they are equivalent).

The following table describes the refinement mapping and the acceptance
sets; the set of hidden events is empty:

a|G(a) M~ (a)|G(M ! (a))

0|ReqTokens(O1) ReqTokens(02) |0 ReqTokens(O1) ReqTokens(02)
1|CollTokens(0O1) ReqOff(0O1) 1 CollTokens(O1) ReqOff(O1)
2|CollTokens(02) ReqOff(02) 2 CollTokens(02) ReqOff(02)
3|SendOff(02) QueryHome(home(1))|3 SendOff(02) QueryHome(home(1))
4|CollTokens(02) 4 CollTokens(02)
5|RecHome(home(1)) 5 RecHome(home(1))

6(SendOff(02) 6 SendOff(02)

7|SendOff(01) 7 SendOff(01)

8|CollTokens(O1) 8 CollTokens(O1)

The sets, variables and guards automatically computed by the Csp2B tool
are :

REFINEMENT TokensRefRef
REFINES TokensRef

SEES POsets

INCLUDES TokensRefRefActs

SETS

CentreState= { CentreAsleep,Centre Answer, CentreAnswer_ 1,
CentreAnswer_2};

OfficesState= { Office Asleep, Office Request, Office Request_ 1,0ffice Request_2};

HomeState = { HomeAsleep, HomeRequest}

VARIABLES
Centre, ce-off, Olffices, oo-off, Home, ho_-off

DEFINITIONS

grd_TokensRefRef_CollTokens(off) ==
((mo.otokens (oo-off) > 0 A Offices = OfficeRequest A off = oo-off)
V (Offices = OfficeRequest_2 A off = oo-off)) ;

grd_TokensRefRef-ReqTokens(off) == (Offices = OfficeAsleep) ;

grd_TokensRefRef_SendOff ==
(((Centre = CentreAnswer-2 N\ off = ce_off’)
V (= (= (ceoff = home(1))) A Centre = CentreAnswer

A off = ce_off))
A (Offices = OfficeRequest-1 N off = oo-off)) ;
grd_TokensRefRef-RecHome ==

((Centre = CentreAnswer-1 N off = home (1))
A (Home = HomeRequest N\ off = ho_off)) ;

grd_TokensRefRef_ReqOff ==
((Centre = CentreAsleep)
A (Offices = OfficeRequest N\ off = oo-off)) ;

grd_TokensRefRef-QueryHome ==
((= (ceoff = home (1)) A Centre = CentreAnswer
A off = home (1))
A (Home = HomeAsleep))

END

With the abstraction invariants defined following our approach and those de-
fined in the B refinement TokensRefRefActs, 398 proof obligations are generated
by AtelierB, of which 41 have been proved manually, the others automatically.

6 Conclusion

In this paper, we are interested in an existing approach which combines CSP
processes and B descriptions. A tool allows us to generate automatically from
this combination B abstract machines or their refinements. However to check re-
finement we have to define some abstraction invariants to link abstract variables
to concrete ones. We have proposed an approach that generates automatically
some of these invariants. This approach is based on the labelled transition sys-
tems obtained by model-checking the CSP processes. A classical B proof step is
then applied to verify refinement of the generated B machines. Moreover, when
the conjoined B machines do not depend on the CSP processes, this last refine-
ment step can be discharged. Otherwise, additional invariants must be added
manually before verifying refinement.

Acknowledgements. We would like to thank the other members of the ABCD
project for fruitful discussions and useful coments on this work. We are especially
grateful to Michael Butler for his explaination on the Csp2B approach and his
comments on an early version of this paper.

References

[Abr96] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[AL91]
[B-C99]

[But97]

[But99]

[DS00]

[For97]

[FW99)

M. Abadi and L. Lamport. The existence of refinement mappings. Theoret-
ical Computer Science, 82(2), May 1991.

B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. Avail-
able at http://www.b-core.com/ONLINEDOC/Contents.html.

M. J. Butler. An approach to the design of distributed systems with B
AMN. In J. Bowen, M. Hinchey, and D. Till, editors, Proc. 10th Int. Conf.
of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212, pages
223-241, Reading, UK, April 1997. Springer-Verlag, Berlin. Available at
http://www.dsse.ecs.soton.ac.uk/.

M. J. Butler. csp2B: A practical approach to combining CSP and B. In J. M.
Wing, J. Woodcock, and J. Davies, editors, Proc. FM’99: World Congress
on Formal Methods, LNCS 1708, pages 490-508. Springer-Verlag, Berlin,
September 1999. Available at http://www.dsse.ecs.soton.ac.uk/.

J. Derrick and G. Smith. Structural refinement in object-
z /| csp. In IFM’2000 (Integrated Formal Methods), vol-
ume 1945 of LNCS. Springer-Verlag, 2000. Available at
http://www.cs.ukc.ac.uk/research/tcs/index.html.

Formal Systems (Europe) Ltd. Failures-Divergence
Refinement- FDR2 wuser manual, Octobre 1997. Available at

www.formal.demon.co.uk/fdr2manual/index.html.

C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications
with FDR. In First international Conference on Integrated Formal
Methods (IFM99), pages 315-334. Springer-Verlag, 1999. Available at
http://semantik.Informatik.Uni—Oldenburg.DE/persons/clemens.ficher/.

[HBC*T99] P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin,

[Hoa85]
[MC99]

[Mor90]

[MS98]

[Ros97]
[Spi92]
[Ste96]

[WMO0]

A. Smith, U. Ultes-Nitsche, and B. Walters. Questions and answers about
ten formal methods. In S. Gnesi and D. Latella, editors, Proc. 4th Int.
Workshop on Formal Methods for Industrial Critical Systems, volume II,
pages 179-203, Trento, Italy, July 1999. ERCIM, STAR/CNR, Pisa, Italy.
Available at http://www.dsse.ecs.soton.ac.uk/.

C.A.R Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

I. MacColl and D. Carrington. Specifying interactive systems in
Object-Z and CSP. In First international Conference on Inte-
grated Formal Methods (IFM99). Springer-Verlag, 1999. Available at
http://archive.csse.uq.edu.au/ ianm/.

C.C. Morgan. Of wp and CSP. In W.H.J. Feijen, A.J.M. van Gasteren,
D. Gries, and J. Misra, editors, Beauty is our business: a birthday salute to
Edsger W. Dijkstra. Springer Verlag, 1990.

A. Mota and A. Sampaio. Model-checking CSP-Z. In Fundamental Approach
of Software Engineering (FASE98), number 1382 in LNCS, pages 205-220.
Springer Verlag, 1998. Available at http://www.di.ufpe.br/ acm/.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science, 2nd edition, 1992.

Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals,
1996. Available at http://www.atelierb.societe.com/index_uk.html.

J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concur-
rent systems. In D. Bjorner, C.A.R. Hoare, and H. Langmaack, edi-
tors, VDM’90, volume 428 of LNCS. Springer-Verlag, 1990. Available at
http://www.iro.umontreal.ca/labs/teleinfo/PubListIndex.html.

