Abstract
In the study of discovering association rules, it is regarded as an important task to reduce the number of generated rules without loss of any information about the significant rules. From this point of view, Bastide, et al. have proposed to generate only non-redundant rules [2]. Although the number of generated rules can be reduced drastically by taking the redundancy into account, many rules are often still generated. In this paper, we try to propose a method for reducing the number of the generated rules by extending the original framework. For this purpose, we introduce a notion of approximate generatorand consider an approximate redundancy. According to our new notion of redundancy, many non-redundant rules in the original sense are judged redundant and invisible to users. This achieves the reduction of generated rules. Furthermore, it is shown that any redundant rule can be easily reconstructed from our non-redundant rule with its approximate support and confidence. The maximum errors of these values can be evaluated by a user-defined parameter. We present an algorithm for constructing a set of non-redundant rules, called an approximate informative basis. The completeness and weak-soundness of the basis are theoretically shown. Any significant rule can be reconstructed from the basis and any rule reconstructed from the basis is (approximately) significant. Some experimental results show an effectiveness of our method as well.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules, Proc. of the 20th Int’l Conf. on Very Large Data Bases, pp. 478–499, 1994.
Y. Bastide, N. Psquier, R. Taouil, G. Stumme and L. Lakhal: Mining Minimal Non-Redundant Association Rule Using Frequent Closed Itemset Proc. of Int’l Conf. on Computational Logic-CL2000, LNAI 1861, pp.972–986, 2000
N. Pasquier, Y. Bastide, B. Rafik and L. Lakhal: Efficient Mining of Association Rules Using Closed Itemset Lattices, Information Systems, vol. 24, no. 1, pp.25–46, 1999
N. Pasquier, Y. Bastide, B. Rafik and L. Lakhal: Discovering Frequent Closed Itemsets for Association Rules, Proc. of ICDT, LNCS 1540, pp.398–416 1999
J. Pei, J. Han and R. Mao: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets, Proc. of DMKD2000, 2000
M. J. Zaki and C. Hsiao: CHARM: An Efficient Algorithm for Closed Association Rule Mining, Technical Report 99-10, Computer Science, Rensselaer Polytechnic Institute, 1999
P.M. Marphy and D. W. Aha.: UCI Repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html, Univ. of California, Dept. of Information and Computer Science, 1994
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kanda, K., Haraguchi, M., Okubo, Y. (2001). Constructing Approximate Informative Basis of Association Rules. In: Jantke, K.P., Shinohara, A. (eds) Discovery Science. DS 2001. Lecture Notes in Computer Science(), vol 2226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45650-3_15
Download citation
DOI: https://doi.org/10.1007/3-540-45650-3_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42956-2
Online ISBN: 978-3-540-45650-6
eBook Packages: Springer Book Archive