Abstract
In this paper we claim that meaningful representations can be learned by programs, although today they are almost always designed by skilled engineers. We discuss several kinds of meaning that representations might have, and focus on a functional notion of meaning as appropriate for programs to learn. Specifically, a representation is meaningful if it incorporates an indicator of external conditions and if the indicator relation informs action. We survey methods for inducing kinds of representations we call structural abstractions. Prototypes of sensory time series are one kind of structural abstraction, and though they are not denoting or compositional, they do support planning. Deictic representations of objects and prototype representations of words enable a program to learn the denotational meanings of words. Finally, we discuss two algorithms designed to find the macroscopic structure of episodes in a domain-independent way.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cohen, P.R., Oates, T., Adams, N., Beal, C.R. (2001). Robot Baby 2001. In: Jantke, K.P., Shinohara, A. (eds) Discovery Science. DS 2001. Lecture Notes in Computer Science(), vol 2226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45650-3_5
Download citation
DOI: https://doi.org/10.1007/3-540-45650-3_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42956-2
Online ISBN: 978-3-540-45650-6
eBook Packages: Springer Book Archive