Skip to main content

The Functions Provable by First Order Abstraction

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2250))

Abstract

Function provability in higher-order logic is a versatile and powerful framework for conceptual classification as well as verification and derivation of declarative programs. Here we show that the functions provable in second-order logic with first-order set-abstraction are precisely the elementary functions. This holds regardless of whether the logic is classical, intuitionistic, or minimal.

The notion of provability here is not purely logical, as it incorporates a trivial theory of data, with axioms stating that each data object has a detectable main constructor which can be destructed. We show that this is necessary, by proving that without such rudimentary axioms the provable functions are merely the functions broadly-represented in the simply typed lambda calculus, a collection that does not even include integer subtraction.

Research supported by NSF grant CS-0105651

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold Beckmann and Andreas Weiermann. Characterizing the elementary recursive functions by a fragment of Gödel’s T. Archive for Mathematical Logic, 39:475–491, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the poly-time functions, 1992. To appear in Computational Complexity.

    Google Scholar 

  3. Stephen Bellantoni and Martin Hofmann. A new feasible arithmetic. Journal for Symbolic Logic, 2001.

    Google Scholar 

  4. Garrett Birkhoff. On the structure of abstract algebras. Proc. Cambridge Phil. Soc., 31:433–454, 1935.

    Article  MATH  Google Scholar 

  5. Corrado Böhm and Allessandro Berarducci. Automatic synthesis of typed λ-programs on term algebras. Theoretical Computer Science, 39:135–154, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

    Google Scholar 

  7. A. Cobham. The intrinsic computational dificulty of functions. In Y. Bar-Hillel, editor, Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, pages 24–30. North-Holland, Amsterdam, 1962.

    Google Scholar 

  8. Vicent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Information and Computation, to appear.

    Google Scholar 

  9. Jean-Yves Girard. Une extension de l’interprétation de Gödel á l’analyse, et son application a l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 63–92, Amsterdam, 1971. North-Holland.

    Google Scholar 

  10. Kurt Gödel. Über eine bisher noch nicht benutzte erweiterung des finiten standpunktes. Dialectica, 12:280–287, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  11. Herman Ruge Jervell and Wenhui Zhang. Cut formulas for kalmar elementary functions. Technical Report issn: 1103-467x, Institut Mittag-Leffer, June 2001.

    Google Scholar 

  12. Stephen C. Kleene. Introduction to Metamathematics. Wolters-Noordhof, Groningen, 1952.

    MATH  Google Scholar 

  13. Stephen C. Kleene. Formalized Recursive Functions and Formalized Realizability, volume 89 of Memoirs of the AMS. American Mathematical Society, Providence, 1969.

    Google Scholar 

  14. Daniel Leivant. Subrecursion and lambda representation over free algebras. In Samuel Buss and Philip Scott, editors, Feasible Mathematics, Perspectives in Computer Science, pages 281–291. Birkhauser-Boston, New York, 1990.

    Google Scholar 

  15. Daniel Leivant. Semantic characterization of number theories. In Y. Moschovakis, editor, Logic from Computer Science, pages 295–318. Springer-Verlag, New York, 1991.

    Google Scholar 

  16. Daniel Leivant. A foundational delineation of poly-time. Information and Computation, 110:391–420, 1994. (Special issue of selected papers from LICS’91, edited by G. Kahn). Preminary report: A foundational delineation of computational feasibility, in Proceedings of the Sixth IEEE Conference on Logic in Computer Science, IEEE Computer Society Press, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. Daniel Leivant. Higher-order logic. In D.M. Gabbay, C.J. Hogger, J.A. Robinson, and J. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 2: Deduction Methodologies, pages 230–321. Oxford University Press, Oxford, 1994.

    Google Scholar 

  18. Daniel Leivant. Predicative recurrence in finite type. In A. Nerode and Yu.V. Matiyasevich, editors, Logical Foundations of Computer Science (Third International Symposium), LNCS, pages 227–239, Berlin, 1994. Springer-Verlag.

    Google Scholar 

  19. Daniel Leivant. Intrinsic theories and computational complexity. In D. Leivant, editor, Logic and Computational Complexity, LNCS, pages 177–194, Berlin, 1995. Springer-Verlag.

    Google Scholar 

  20. Daniel Leivant. Intrinsic reasoning about functional programs I: First order theories. Annals of Pure and Applied Logic, 2001.

    Google Scholar 

  21. Daniel Leivant. Peano’s lambda calculus: The functional abstraction implicit in arithmetic. In C. Anthony Anderson and Mikhail Zeleny, editors, Church Memorial Volume: Logic, Language, and Computation. Kluwer Academic Publishing, Dordrecht, 2001.

    Google Scholar 

  22. Daniel Leivant. Termination proofs and complexity certification. In N. Kobayasi and B. Pierce, editors, Proceedings of TACS’01, LNCS, Berlin, 2001. Springer-Verlag.

    Google Scholar 

  23. K. Meinke and J.V. Tucker. Universal algebra. In D.M. Gabbay S. Abramsky and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 189–411. Oxford University Press, Oxford, 1992.

    Google Scholar 

  24. Charles Parsons. On a number-theoretic choice schema and its relation to induction. In A. Kino, J. Myhill, and R. Vesley, editors, Intuitionism and Proof Theory, pages 459–473. North-Holland, Amsterdam, 1977.

    Google Scholar 

  25. B. Plotkin. Universal Algebra, ALgebraic Logic, and Databases. Kluwer, Dordrecht, 1994.

    Google Scholar 

  26. D. Prawitz. Natural Deduction. Almqvist and Wiksell, Uppsala, 1965.

    Google Scholar 

  27. Stephen Simpson. Subsystems of Second-Order Arithmetic. Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  28. Richard Statman. Structural complexity of proofs. PhD thesis, Stanford University, 1974. PhD Thesis.

    Google Scholar 

  29. Richard Statman. The typed ë-calculus is not elementary recursive. Theoretical Computer Science, 9:73–81, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  30. W. Wechler. Universal Algebra for Computer Scientists. Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leivant, D. (2001). The Functions Provable by First Order Abstraction. In: Nieuwenhuis, R., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2001. Lecture Notes in Computer Science(), vol 2250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45653-8_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45653-8_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42957-9

  • Online ISBN: 978-3-540-45653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics