Skip to main content

Coherent Composition of Distributed Knowledge-Bases through Abduction

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2250))

Abstract

We introduce an abductive method for coherent composition of distributed data. Our approach is based on an abductive inference procedure that is applied on a meta-theory that relates different, possibly inconsistent, input databases. Repairs of the integrated data are computed, resultingin a consistent output database that satisfies the meta-theory. Our framework is based on the A-system, which is an abductive system that implements SLDNFA-resolution. The outcome is a robust application that, to the best of our knowledge, is more expressive (thus more general) than any other existing application for coherent data integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Arenas, L.E. Bertossi, J. Chomicki. Consistent query answers in inconsistent databases. Proc. PODS’99, 68–79, 1999.

    Google Scholar 

  2. O. Arieli. Four-valued logics for reasoning with uncertainty in prioritized data. In:Information, Uncertainty, Fusion, 263–309, Kluwer, 1999.

    Google Scholar 

  3. C. Baral, S. Kraus, J Minker. Combining Multiple Knowledge Bases. IEEE Trans. on Knowledge and Data Enginnering 3(2), 208–220, 1991.

    Article  Google Scholar 

  4. S. Benferhat, C. Cayrol, D. Dubois, J.Lang, H. Prade. Inconsistency management and prioritized syntax-based entailment. Proc. IJCAI’93, 640–645, 1993.

    Google Scholar 

  5. S. Benferhat, D. Dubois, H. Prade. How to infer from inconsistent beliefs without revising? Proc. IJCAI’95, 1449–1455, 1995.

    Google Scholar 

  6. L. Bertossi, M. Arenas, C. Ferretti. SCDBR: An automated reasoner for specifications of database updates. Intelligent information Systems 10(3), 253–280, 1998.

    Article  Google Scholar 

  7. F. Bry. Query Answeringin Information Systems with Integrity Constraints. Proc.IICIS’97, 113–130, 1997.

    Google Scholar 

  8. M. Denecker, A.C. Kakas. Abductive Logic Programming, Special issue of Journal of Logic Programming, 44 (1–3), 2000.

    Google Scholar 

  9. M. Denecker. Extendingclassical logic with inductive definitions. Proc. CL’2000,J. Lloyd et al., editors, LNAI 1861, Springer, 703–717, 2000.

    Google Scholar 

  10. M. Denecker, D. De Schreye. SLDNFA an abductive procedure for abductive logic programs. Journal of Logic Programming 34(2), 111–167, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Fitting. Negation as refutation. Proc. LICS’89, IEEE Press, 63–70, 1989.

    Google Scholar 

  12. M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming 11(2), 91–116, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Gertz, U.W. Lipeck. An extensible framework for repairingconstraint violations.Proc. IICIS’97, 89–111, 1997.

    Google Scholar 

  14. S. Greco, E. Zumpano. Querying inconsistent databases. Proc. LPAR’2000,M. Parigot and A. Voronokov, editors, LNAI 1955, 308–325, Springer, 2000.

    Google Scholar 

  15. K. Inoue, C. Sakama. Abductive framework for nonmonotonic theory change. Proc.IJCAI’95, 204–210, 1995.

    Google Scholar 

  16. T. Kakas, P. Mancarella. Database updates through abduction. Proc VLDB’90, 650–661, 1990.

    Google Scholar 

  17. T. Kakas, A. Michael, C. Mourlas. ACLP: Abductive constraint logic programming.Journal of Logic Programming 44(1–3), 129–177, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Kakas, B. Van Nuffelen, M. Denecker. A-System: Problem solving through abduction.Proc. IJCAI’01, 2001.

    Google Scholar 

  19. M. Kifer, E.L. Lozinskii. A logic for reasoning with inconsistency. Journal of Automated Reasoning 9(2), 179–215, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Liberatore, M. Schaerf. BReLS: a system for the integration of knowledge bases.Proc KR’2000, 145–152, 2000.

    Google Scholar 

  21. J. Lin, A.O. Mendelzon. Merging databases under constraints. Int. Journal of CooperativeInformation Systems 7(1), 55–76, 1998.

    Article  Google Scholar 

  22. B. Messing. Combining knowledge with many-valued logics. Data and Knowledge Engineering 23, 297–315, 1997.

    Article  MATH  Google Scholar 

  23. A. Olivé. Integrity checking in deductive databases. Proc VLBD’91, 513–523, 1991.

    Google Scholar 

  24. L. M. Pereira, J.N. Aparicio, J.J. Alferes., Hypothetical Reasoningwith Well Founded Semantics, Proc. of the 3th Scandinavian Conference on AI, B. Mayoh,IOS Press, 289–300, 1991

    Google Scholar 

  25. R. Reiter. On specifying data base updates. Journal of Logic Programming, 25(1), 53–91, 1995.

    Article  MATH  Google Scholar 

  26. P.Z. Revesz. On the semantics of theory change: Arbitration between old and new information. Proc. PODS’93, 71–82, 1993.

    Google Scholar 

  27. C. Sakama, K. Inoue. Updating extended logic programs through abduction. ProcLPNMR’99, 147–161, 1999.

    Google Scholar 

  28. V.S. Subrahmanian. Mechanical proof procedures for many valued lattice-based logic programming. Journal of Non-Classical Logic 7, 7–41, 1990.

    MathSciNet  Google Scholar 

  29. V.S. Subrahmanian. Amalgamating knowledge-bases. ACM Trans. on DatabaseSystems 19(2), 291–331, 1994.

    Article  MathSciNet  Google Scholar 

  30. S. Verbaeten, M. Denecker, D. De Schreye. Compositionality of normal open logic programs. Journal of Logic Programming 41(3), 151–183, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arieli, O., Van Nuffelen, B., Denecker, M., Bruynooghe, M. (2001). Coherent Composition of Distributed Knowledge-Bases through Abduction. In: Nieuwenhuis, R., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2001. Lecture Notes in Computer Science(), vol 2250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45653-8_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-45653-8_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42957-9

  • Online ISBN: 978-3-540-45653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics