Skip to main content

Broadcasting in Generalized de Bruijn Digraphs

Extended Abstract

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2387))

Included in the following conference series:

Abstract

This work deals with a broadcasting on generalized de Bruijn digraphs. Broadcasting on digraphs corresponds to one on networks with monodirection communication links in practice. The efficiency of broadcasting is affected by network topology. Generalized de Bruijn digraph is one of useful network models. We propose protocols for broadcasting on generalized de Bruijn digraphs using Kronecker product of graphs. The protocol presented in this paper constructs a k-ramified tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-C. Bermond and C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube?, Hypercube and Distributed Computers, (F. Andrè and J. P. Verjus, Eds.), Elsevier North-Hollamd, Amsterdam, 1989.

    Google Scholar 

  2. J.-C. Bermond and P. Fraigniaud, Broadcasting and gossiping in de Bruijn networks, SIAM J. Comp., 23(1994) 212–225.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bruck, R. Cypher and C-H Ho, Multiple message Broadcasting with generalized Fibonacci trees, 4th IEEE Symposium on parallel and Distributed Processing, (1992) 424–431.

    Google Scholar 

  4. G.-M. Chiu, A fault-tolerant broadcasting algorithm for hypercubes, Info. Processing letters, 66(1998) 93–99.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Diks, S. Dobrev, E. Kranakis, A. Pelc and P. Ružička, Broadcasting in unlabeled hypercubes with a linear number of messages, Info. Processing letters, 66(1998) 181–186.

    Article  MATH  Google Scholar 

  6. D. Z. Du and F. K. Hwang, Generalized de Bruijn digraphs, Networks, 18(1988) 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. GowriSankaran, Broadcasting on recursively decomposable Cayley graphs, Discrete Appl. Math., 53(1994) 171–182.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. T. Hedetniemi, S. Hedetniemi and A. Liestman, A survey of gossiping and broadcasting in communication networks, Networks, 18(1986) 319–349.

    Article  MathSciNet  Google Scholar 

  9. M. Imase and M. Itoh, Design to minimize diameter on buildin-block network, IEEE Trans. Comp., C-30 (1981) 439–442.

    Article  MathSciNet  Google Scholar 

  10. M. Imase and M. Itoh, A design for directed graphs with minimum diameter, IEEE Trans. Comp., C-32 (1983) 782–784.

    Article  Google Scholar 

  11. S. Johnsson and C.-T. Ho, Optimum broadcasting and personalized communication in hypercubes, IEEE Trans. Comp., C-38 (1989) 1249–1268.

    Google Scholar 

  12. M. Mora, O. Serra and M. A. Fiol, General properties of c-circulant digraphs, Ars Comb., 25C (1998) 241–252.

    MathSciNet  Google Scholar 

  13. F. T. Leighton, Introduction to parallel algorithms and architectures: arrays · trees · hypercubes, Morgan Kaufmann, San Mateo, 1992.

    MATH  Google Scholar 

  14. S. M. Reddy, D. K. Pradhan and J. Kuhl, Directed graphs with minimal diameter and maximum node connectivity, School of Engineering Oakland Univ. Tech. Report, 1980.

    Google Scholar 

  15. P. J. Slater, E.J. Cockayne and S.T. Hedetniemi, Information dissemination in trees, SIAM J. Comp., 10 (1981) 692–701.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kikuchi, Y., Osawa, S., Shibata, Y. (2002). Broadcasting in Generalized de Bruijn Digraphs. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45655-4_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43996-7

  • Online ISBN: 978-3-540-45655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics