Skip to main content

Supertrees by Flipping

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2387))

Included in the following conference series:

Abstract

The input to a supertree problem is a collection of phyloge-netic trees that intersect pairwise in their leaf sets; the goal is to construct a single tree that retains as much as possible of the information in the input. This task is complicated by inconsistencies due to errors. We consider the case where the source trees are rooted and are represented by the clusters they exhibit. The problem is to find the minimum number of flips needed to resolve all inconsistencies, where each flip moves a taxon into or out of a cluster. We prove that the minimum flip problem is \( \mathcal{N}\mathcal{P} \) -complete, but show that it is fixed-parameter tractable and give an approximation algorithm for a special case.

Research of D. Chen, O. Eulenstein, and M. Sanderson supported in part by the National Science Foundation (NSF) under grant no. 0075319. D. Fernández-Baca was supported in part by NSF under grant CCR-9520946.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions, SIAM Journal on Computing 10 (1981), no. 3, 405–421.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. R. Baum, Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees, Taxon 41 (1992), 3–10.

    Article  Google Scholar 

  3. O. R. P. Bininda-Emonds, J. L. Gittleman, and A. Purvis, Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia), Biol. Rev. 74 (1999), 143–175.

    Article  Google Scholar 

  4. D. R. Brooks, Hennig’s parasitological method: a proposed solution, Syst. Zool. 30 (1981), 325,331.

    Google Scholar 

  5. David Bryant, John Tsang, Paul E. Kearney, and Ming Li, Computing the quartet distance between evolutionary trees, Symposium on Discrete Algorithms, 2000, pp. 285–286.

    Google Scholar 

  6. D. Chen, O. Eulenstein, D.Fernández-Baca, and M. Sanderson, http://genome.cs.iastate.edu/supertree.

  7. —, Supertrees by flipping, Tech. Report TR02-01, Iowa State University, Dept. of Computer Science, Iowa State University, Department of Computer Science, 226 Atanasoff Hall, Ames, IA 50011-1040 USA, January 2002.

    Google Scholar 

  8. M. J. Donoghue, Phylogenies and the analysis of evolutionary sequences, with examples from seed plants, Evolution 43 (1989), 1137–1156.

    Article  Google Scholar 

  9. R. G. Downey and M. R. Fellows, Parameterized compllexity, Springer, 1997.

    Google Scholar 

  10. G. F. Estabrook, C. Johnson, and F. R. McMorris, An idealized concept of the true cladistic character?, Mathematical Bioscience 23 (1975), 263–272.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. S. Farris, On comparing the shapes of taxonomic trees, Systematic Zoology 22 (1976), 50–54.

    Article  Google Scholar 

  12. J. Felsenstein, PHYLIP homepage, http://evolution.genetics.washington.edu/phylip.html.

  13. A. D. Gordon, Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labelled leaves, J. Classif. 9 (1986), 335–348.

    Article  Google Scholar 

  14. R. L. Graham and L. R. Foulds, Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computation time, Math. Biosci. 60 (1982), 133–142.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge University Press, 1979.

    Google Scholar 

  16. Henzinger, King, and Warnow, Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology, SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms), 1996.

    Google Scholar 

  17. M. R. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology, Algorithmica 24 (1999), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sampath Kannan, Tandy Warnow, and Shibu Yooseph, Computing the local consensus of trees, Symposium on Discrete Algorithms, 1995, pp. 68–77.

    Google Scholar 

  19. P. Kearney, M. Li, J. Tsang, and T. Jiang, Recovering branches on the tree of life: An approximation algorithm, SODA, 1999, pp. 537–5465.

    Google Scholar 

  20. F. G. R. Liu, M. M. Miyamoto, N. P. Freire, P. Q. Ong, M. R. Tennant, T. S. Young, and K. F. Gugel, Molecular and morphological supertrees for eutherian (placental) mammals, Science 291 (2001), 1786–1789.

    Article  Google Scholar 

  21. A. Natanzon, R. Shamir, and R. Sharan, Complexity classification of some edge modification problems, Discrete Applied Mathematics 113 (2001), no. 1, 109–128.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Ortolani, Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method, Biol. J. Linn. Soc. 67 (1999), 433–476.

    Article  Google Scholar 

  23. I Pe’er, R. Shamir, and R. Sharan, Incomplete directed perfect phylogeny., Proc. CPM 2000, 2000, pp. 143–153.

    Google Scholar 

  24. A. Purvis, A modification to Baum and Ragan’s method for combining phylogenetic trees, Systematic Biology 44 (1995), 251–255.

    Article  Google Scholar 

  25. M. A. Ragan, Phylogenetic inference based on matrix representation of trees, Molecular Phylogenetics and Evolution 1 (1992), 53–58.

    Article  Google Scholar 

  26. M. J. Sanderson, A. Purvis, and C. Henze, Phylogenetic supertrees: assembling the trees of life, Trends Ecol. Evol. 13 (1998), 105–109.

    Article  Google Scholar 

  27. C. Semple and M. Steel, A supertree method for rooted trees, Discrete Applied Mathematics 105 (2000), 147–158.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal of Classification 9 (1992), 91–116.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. F. Wojciechowski, M. J. Sanderson, K. P. Steele, and A. Liston, Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach, Adv. Legume Syst., in press.

    Google Scholar 

  30. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM Journal on Algebraic and Discrete Methods 2 (1981), no. 1, 77–79.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M. (2002). Supertrees by Flipping. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-45655-4_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43996-7

  • Online ISBN: 978-3-540-45655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics