Skip to main content

Improved Compact Routing Tables for Planar Networks via Orderly Spanning Trees

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2387))

Included in the following conference series:

Abstract

We address the problem of designing compact routing tables for an unlabeled connected n-node planar network G. For each node r of G, the designer is given a routing spanning tree T r of G rooted at r, which specifies the routes for sending packets from r to the rest of G. Each node r of G is equipped with ports 1,2,...,d r , where d r is the degree of r in T r . Each port of r is supposed to be assigned to a neighbor of r in T r in a one-to-one manner. For each node v of G with υr, let portr (υ) be the port to which r should forward packets with destination υ. Under the assumption that the designer has the freedom to determine the label and the port assignment of each node in G, the routing table design problem is to design a compact routing table R r for r such that portr(υ) can be determined only from R r and the label of υ.

Compact routing tables for various network topologies have been extensively studied in the literature. Planar networks are particularly important for routing with geometric metrics. Based upon four-page decompositions of G, Gavoille and Hanusse gave the best previously known result for this problem: Each portr(υ) is computable in O(log2+ n) bit operations for any positive constant ɛ; and the number of bits required to encode their R r is at most 8n + o(n). We give a new design that improves the code length of R r to at most 7.181n + o(n) bits without increasing the time required to compute portr(v).

Research supported in part by NSC grant NSC 90-2213-E-001-018. Institute of Information Science, Academia Sinica, 128 Academia Road, Sect. 2, Taipei 115, Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved routing strategies with succinct tables. Journal of Algorithms, 11(3):307–341, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Becker and K. Mehlhorn. Algorithms for routing in planar graphs. Acta Informatica, 23(2):163–176, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bose and P. Morin. Competitive online routing in geometric graphs. In Proceedings of the 8th International Colloquium on Structural Information and Communication Complexity, pages 35–44, 2001.

    Google Scholar 

  4. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

    Article  MATH  Google Scholar 

  5. L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences, 39:205–219, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications to graph drawing and graph encoding. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, Washington, DC, 7–9 Jan. 2001. A revised and extended version can be found at http://xxx.lanl.gov/abs/cs.DS/0102006.

  7. R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 1443, pages 118–129, Aalborg, Denmark, 1998. Springer-Verlag.

    Chapter  Google Scholar 

  8. L. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. In Prooceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, pages 51–59. ACM PRESS, 2000.

    Google Scholar 

  9. L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–183, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory, IT-21:194–203, 1975.

    Article  MathSciNet  Google Scholar 

  12. P. Fraigniaud and C. Gavoille. Routing in trees. In F. Orejas, P. G. Spirakis, and J. v. Leeuwen, editors, Proceedings of the 28th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 2076, pages 757–772. Springer, July 2001.

    Chapter  Google Scholar 

  13. P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 2285, pages 65–75. Springer, Mar. 2002.

    Google Scholar 

  14. G. N. Frederickson and R. Janardan. Designing networks with compact routing tables. Algorithmica, 3(1):171–190, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. N. Frederickson and R. Janardan. Efficient message routing in planar networks. SIAM Journal on Computing, 18:843–857, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Jouranl of Computer and System Sciences, 48(3):533–551, June 1994.

    Google Scholar 

  17. J. Gao, L. J. Guibas, J. Hershburger, L. Zhang, and A. Zhu. Geometric spanner for routing in mobile networks. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc), 2001.

    Google Scholar 

  18. C. Gavoille. A survey on interval routing. Theoretical Computer Science, 245(2):217–253, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch factor three. Journal of Parallel and Distributed Computing, 61:679–687, 2001.

    Article  MATH  Google Scholar 

  20. C. Gavoille and N. Hanusse. Compact routing tables for graphs of bounded genus. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, 26th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 1644, pages 351–360. Springer, July 1999. A full version is available at http://dept-info.labri.fr/~gavoille/article/ GH99up.ps.gz.

    Chapter  Google Scholar 

  21. C. Gavoille and D. Peleg. The compactness of interval routing. SIAM Journal on Discrete Mathematics, 12(4):459–473, Oct. 1999.

    Google Scholar 

  22. C. Gavoille and D. Peleg. The compactness of interval routing for almost all graphs. SIAM Journal on Computing, 31(3):706–721, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in the plane. Distributed Computing, 14(4):205–215, 2001.

    Article  Google Scholar 

  24. G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages 549–554, Research Triangle Park, North Carolina, 30 Oct.-1 Nov. 1989. IEEE.

    Google Scholar 

  25. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  26. B. N. Karp. Geographic Routing for Wireless Networks. PhD thesis, Harvard University, Cambridge, MA, Oct 2000.

    Google Scholar 

  27. B. N. Karp and H. T. Kung. GPSR: Greedy perimeter stateless rouring for wireless networks. In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages 243–254, Boston, 2000.

    Google Scholar 

  28. X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of a planar spanner and routing for ad hoc wireless networks. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (InfoCom), New York City, 2002. To appear.

    Google Scholar 

  29. C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning via orderly spanning trees. In Proceedings of the 9th International Symposium on Graph Drawing, Lecture Notes in Computer Science 2265, pages 367–377, Vienna, Austria, 2001. Springer.

    Google Scholar 

  30. G. Lin. Fault tolerant planar communication networks. In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing, pages 133–139, 1992.

    Google Scholar 

  31. J. I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees and planar graphs. SIAM Journal on Computing, 31(3):762–776, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Narasimhan and M. Smid. Approximating the stretch factor of euclidean graphs. SIAM Journal on Computing, 30(3):978–989, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete Mathematics and Applications. SIAM, 2000.

    Google Scholar 

  34. D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the ACM, 36(3):510–530, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to representations of k-ary trees and multisets. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233–242, San Francisco, 6–8 Jan. 2002.

    Google Scholar 

  36. W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

    Google Scholar 

  37. M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 1–10. ACM PRESS, 2001.

    Google Scholar 

  38. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chapter 1, pages 1–60. Elsevier, Amsterdam, 1990.

    Google Scholar 

  39. M. Yannakakis. Embedding planar graphs in four pages. Jouranl of Computer and System Sciences, 38(1):36–67, Feb. 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, HI. (2002). Improved Compact Routing Tables for Planar Networks via Orderly Spanning Trees. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45655-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43996-7

  • Online ISBN: 978-3-540-45655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics