On Discrete Modeling and Model Checking
for Nonlinear Analog Systems

Walter Hartong, Lars Hedrich, and Erich Barke

Institute of Microelectronic Circuits and Systems, University of Hannover
Appelstrasse 4, 30167 Hannover, Germany
{hartong,hedrich,barke}@ims.uni-hannover.de
http://www.ims.uni-hannover.de

Abstract. In this contribution we present a new method for developing
discrete models for nonlinear analog systems. Using an adaptive state
space intersection method the main nonlinear properties of the analog
system can be retained. Consequently, digital model checking ideas can
be applied to analog systems. To describe analog specification properties
an extension to the standard model checking language CTL and the ap-
propriate, algorithmic modifications are needed. T'wo nonlinear examples
are given to show the feasibility and the advantages of this method.

1 Introduction

Formal verification for digital systems has a relatively long academic tradition.
However, only a few years ago the capability of these tools has been raised to
real world circuit sizes. Today, there are several commercial formal verification
tools available and formal verification is used in many different disciplines.

There are also some tools which have been extended from digital to hybrid
systems, i.e. to digital systems connected to some analog blocks or to an analog
environment [1]. For some system classes these tools are quite successful, but
they remain focused on the digital part of the system. The analog behavior is
mostly restricted and the verification results are not appropriate to assess the
functionality of the analog part. Furthermore, model checking languages used
are not able to describe analog system properties.

One important paper to be named in this context is written by R. P. Kurshan
and K. L. McMillan [2]. It is focused on digital system behavior but the circuit
model used is based on transistors. Using a uniform state space intersection a
discrete model is developed. The transition between state space regions is gen-
erated by following trajectories in the state space. We will see that these basic
ideas are quite similar to the algorithms described in this contribution. Differ-
ences of these two approaches will be discussed later in more detail. Beyond that,
the reachability analysis for nonlinear differential equations has been described
n [3,4]. As far as we know, there is only one approach on equivalence checking
for nonlinear analog systems [5].

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 401-414, 2002.
© Springer-Verlag Berlin Heidelberg 2002

402 Walter Hartong et al.

This contribution presents a new model checking environment and a CTL
extension which enables the work on pure nonlinear analog systems. The follow-
ing chapter defines analog systems used in this context. The next part presents a
discrete model for an analog system. Finally, a CTL extension is developed and
the resulting changes in the model checking algorithms taken from well known
digital tools are described. At the end, some experimental results are presented
using small nonlinear examples.

2 System Description

The systems we will consider in this context are analog systems on the one
hand and transition systems - as used in actual model checking tools - on the
other hand. As we will see, an analog system is a transition system but the
infinite number of states and the continuously defined state transition make
these systems hardly accessible in an automatic way.

2.1 Analog Systems

The standard way to describe an analog system is a set of nonlinear first order
differential algebraic equations

f(@(t), 2(t),u(t)) =0 (1)

where z(t) is the vector of system variables and u(t) denotes the vector of
input variables. In general, the function f(-) is arbitrarily nonlinear. However,
in practice the nonlinearities are restricted by the device models used. There
are several ways to build such equations for example from a transistor netlist or
a behavioral model. The most common method is the modified nodal analysis
(MNA). The set of state variables in an analog system is given by Equation (2).

ws = {w [@ € f(a(t), x(t), u(t)} (2)

The coding of state variables spanning the state space depends on the way
to build up Equation (1). It is not unique for one system [(]. Moreover, some
state variables might be linearly dependent, so that the effective number of state
variables may be smaller than the size of the set given in Equation (2). However,
the number of independent state variables n is constant for a given system.

The link between state variables and system variables is not necessarily ob-
vious like in the ODE case where #(t) = f(x(t),u(t)). Mathematically, it is
described by the system’s differential index [7]. The initial value problem for
differential algebraic equations can relatively easily be solved for systems of in-
dex 0 and 1. There are some approaches in solving systems with higher index,
however this topic is still under research. Since we focus on basic model checking
methods, this issue will not be discussed here. We assume the equation systems
to be of index 0 or 1 with n linearly independent state variables. The state space
spanned by the state variables x; € R™ is a continuous infinite Euclidean space.

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 403

2.2 Transition Systems
Digital and hybrid model checking tools are often based on transition systems.

Definition 1. A state transition system T = (Q,Qo, Y., R) consists of
— a set of states Q,
— a set of initial states Qo,
— a set of generators or events Y. and
— a state transition relation R C @Q X > XQ.

In fact, the analog system given above is also a state transition system. The
set of states @@ can be represented by the continuous state space R™ . The
number of states z € @ is always infinity, due to the continuous definition of
the state variables. The initial state Qg is a single point or a region in the
state space. Often, but not necessarily, this is the DC operating point. There
are only 7 + 1 generators > causing state transitions, namely, the time ¢ and
the i input values u(t). The state transition relation R C (R" x R x R™) is
a continuous function given by the time derivation #(t) in Equation (1). The
actual state transition can be calculated by integrating this function.

ottt o0 =ott0) + [(0] £ (50,20, u0) =0} @ @

Equation (3) has no direct time dependency but it depends on the input
signals u(t). Thus, the generators | are not time ¢ and input values but rather
a time difference 6t and the input values. Without losing generality, the time
difference §t might be either an infinitesimal small or a finite value.

Thus, digital and analog systems can be described by transition systems.
Unfortunately, the representation of states in the two system classes is totally
different, so that an easy extension of digital tools to analog system seems to be
difficult. Published model checking tools are already able to access discrete and
partly linear system descriptions [1]. However, since our focus is on nonlinear
analog behavior this is not sufficient.

Therefore, a new method has to be developed. Some of the following algo-
rithms have been inspired by research in the area of approximating dynamical
behavior [8]. Despite the similarities, there are a lot of differences, mainly caused
by the overall target of the algorithms. Algorithms from this area have not been
used, but some of the ideas have been adopted. We have already mentioned the
work of Kurshan and McMillan [2] which is also linked to following algorithms.

3 Discrete Model Generation

As we have seen, the continuous variables in an analog system - state values and
time - have to be transfered into a discrete state space description and a state
transition relation. The next sections illustrate this process.

404 Walter Hartong et al.

3.1 Discrete Time Steps

In Section 2.2 we found that the transition relation R C (R” x Rit1 % R”)
for an analog system is given as a continuous function and the actual state
transition can be calculated by integrating this function. In general, Equation
(3) can only be solved using numerical integration. This problem is well known
in analog simulators, like Spice, Spectre, Saber, etc. During transient simulation
the differential equation system is solved using discrete time steps. Given a small
time step At = t; — tp, the transition between the actual state z(ty) and the
next state :(t1) is determined by a numerical integrator, e.g. the backward Euler
formula:

B (2(t0), ult), At) = {x(m

F(HE et aw) =0} @

Disregarding numerical problems, there will always be an error due to the
finite length of At. To bound this error, a local step size control mechanism
is needed. The algorithm used take the second derivation with respect to time
for a local measurement of the integration error. If the given error threshold
is exceeded, step size is reduced otherwise the transient step is accepted. This
method can be used directly in the analog model checking tool. An arbitrary
test point z(t) in the state space is mapped to its successor state z(t + At),
depending on the actual step size At and the input signals u(t). In contrast
to transient simulation, there is no temporal predecessor state for a test point.
A second time step has to be calculated for each point to determine the second
derivation, enabling a local error control.

In general, the time step At will vary throughout the state space, due to the
step size control. As we will see later, this makes the checking of explicit time
dependencies difficult because one has to store At for each transition separately.
To make this easier, the time step is chosen to be equal for each point within
one state space region (to be defined in Section 3.3). Kurshan and McMillan [2]
proposed a constant time step At for the whole space developed by several small
numerical integration steps (segments of trajectories). Despite the advantage of a
constant time step, this is not suitable for all circuits since the step size variation
in terms of state variable values may be large throughout the state space.

Thus, every state space point x(t) can be mapped to its successor point
$(z(t)) = Znum (@(t), Uconst, Atiength_contror) including a local step length control
and assuming given input values. The resulting tuple of test and target point is
represented by a successor vector sv(x(t)) = s(x(t)) — «(t) in the state space.

3.2 Input Value Model

To solve Equation (3) or (4) the input value u(t) is needed. Until now we have
not defined this value. In principle, the input signals might be defined explicitly.
However this is not really useful since the model checking result will only be

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 405

true for one specific input signal and this is a contradiction the formal verifica-
tion idea. Let us therefore assume some conditions for the input signal without
defining it explicitly. To do this, the state space is extended by the input vari-
ables g = {xs,u} € R". It is called extended state space. Thus, every state
within the extended state space contains information about the actual input val-
ues. However, there is no information on the input value change with respect to
time. Moreover, it is theoretically impossible to predict the input value variation
because the input values are not determined by the system itself but rather from
some outside systems.

There are two extreme assumptions: The input values do not change at all
and the input values may change instantaneously over the whole input value
range. For the first assumption, the model is build up as described before for
several constant input values. There will be no transition between states with
different input values. In the second approach, a state space region has not
only transitions to regions at the same input level but additional transitions
to the neighbor regions in terms of input values. By using the extended state
space and the described input model the transition relation changes to R C
(R”‘” x RY x R"H).

As we will see later, both of these input models are useful for certain con-
ditions to be checked. Between these two extreme models it possible to assume
the input values to vary within a given frequency range or within a maximum
input voltage slope. This is the most suitable assumption for real world systems
but it has not been considered in the prototype tool yet.

3.3 State Space Subdivision

To get a discrete and finite state description, the continuous and infinite state
space has to be bounded and subdivided. This is done by rectangular boxes. In
general, boxes are not necessarily the best choice [9], however, for implementation
reasons boxes are the far most convenient data structure. Other subdivision
geometries might be considered during future improvements.

The restriction to a finite region is simply done by a user defined start area,
comprising the considered system behavior. This causes special border problems,
which will be discussed later. However, it does not impact the correctness of the
model checking result because in real world systems there is alway a natural
bound for the state variable values.

Since we do not have a digital environment, a natural subdivision for the
start area, given for example by threshold values of digital state transitions,
is missing [1]. Furthermore, to retain the analog system behavior correctly, a
sufficient number of subdivisions is needed, especially in state space regions
with highly nonlinear behavior. This purpose differs from approaches focusing
on digital circuit behavior [2]. However, the number of discrete regions should
be kept as small as possible to reduce the total runtime.

We start with a user controlled uniform subdivision in all state space di-
mensions. Then, an automatic subdivision strategy is used to react on different
system dynamics, depending on the actual state space region. The main target

406 Walter Hartong et al.

is to get a uniform behavior in each state space box. The uniformity is mea-
sured by the variation of the successor vectors (sv(-)), calculated in the state
space (Section 3.1 and 3.4). Namely, vector length variation /,, and angle a,,
between different vectors are considered. Equations (5) and (6) give the defini-
tion of these values. The function L(-) gives the length of the delivered vector or
vector component. Input value variations are not taken into account.

— 1 _ minyeptest L(SV(y))
S ¥ R))
Ay, = MaXye 7L(sv(y)k) — minye LSV(?})U (6)
" Yen Lisv(y)) Vet Tsv(y))

Box subdivision is continued recursively until /,,, and a,,, drop under a given
threshold or a given subdivision depth is exceeded.

Within the expected accuracy, all boxes fulfilling the [,, and a,, thresholds
do not contain fix points. This is, because fix points are always surrounded
by regions with nonuniform behavior in terms of Equations (5) and (6). This
information is stored and used in the transition relation algorithm (Section 3.4).

Additional subdivisions are applied if the successor vectors in a region are
too short in relation to the box size. This occurs mainly in regions where the
system is strongly nonlinear, which implies At to be very small. Each box in the
state space will represent a single state in the discrete model. Thus, the set of 4
states is given by @ = {box1, boxa, ..., box;}.

3.4 Transition Relation

The last step in getting a discrete system model is the transition relation be-
tween state space regions. In Section 3.1 successor points for single state space
points have been defined (s(-)). Using this point to point relation, the target
region ryqrget is given by the set of all target points associated with a test point
within the state space region 7.5 (see Equation (7)), as illustrated by the gray
regions in Figure 1. We call this exact transformation Ty ().

7/'targeifl = {S(y) | Yy S Ttest} - Tl(rtezt) (7)

Since it is not practical to calculate a huge or - mathematically - infinite
number of successor points for each box, a good estimation or inclusion of the
target region is needed. Three different approaches will be discussed.

An inclusion 7ygrger2 can be calculated using interval analysis [10]. This
approach provides an overestimated solution. That means, the correct solu-
tion 7iarget1 is fully included within 7¢grger2. However, ryqrger2 might be much
larger than 7¢qrger1. This effect is called overestimation and might be a serious
problem especially for large systems [5].

Interval analysis has already successfully been used for hybrid systems [11].

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 407

Ttarget2 = Tinterval (Ttest) - T2 (Ttest) :_) Ttargetl (8)

A more practical but also less accurate way to approximate the target region
is to choose a number of test points pies; within the test region (e.g. randomly,
grid based, or corner values) and to calculate the dedicated target points piarget-
The target region 74,4e13 can be approximated using an appropriate inclusion
of these points. As we will see below, an inclusion operation is also needed
while expanding the target regions to the actual state space regions. These two
steps can be combined. Even a few test points may give a reasonable target
approximation, but the region r¢qrget3 might be under- or overestimated.

Ptest3 = {51; 52, "'7371}; Si € Ttest (9)

Ttarget3 = {inclusion(s(y)) | AS ptest3}’ = T3(Ttest) = Ttargetl (10)

There are two approaches making this process rigorous which means that
the target region r¢grge1 is fully included in the target approximation. At first,
it is shown in [2] that T3 is surely overestimated if all corner values are used
as test points and if s(-) can be assumed to be monotonic. Secondly, following
the argumentation in [8], this is done using Lipschitz constants L in each state
space dimension. Using a grid of test points, spaced by h, one can calculate an
extension diameter d., = Lh for the target points. Expanding each target point
by this diameter d., in each dimension gives a set of boxes. The union of these
boxes is an overestimated target approximation rygrgeta. In Figure 2 three test
and target points and the dedicated extension boxes are shown.

Ttargetd = {expand(Lh) (S(y)) | TES grld (h, 7ﬂtesif)} = T4(Ttest) :_) Ttargetl (11)

v 1 e
- W ex(X1)] 7'\ —‘

Fig. 1. State space transition relation Fig. 2. Rigorous approach using Lips-
using T4 chitz constants

408 Walter Hartong et al.

All discussed target regions (Tiarget1s Ttarget2s Ttarget3s and Tigrgeta) do nOt
fit into the state space subdivisions used. Therefore, a second step is needed to
extend these regions to legal sets of boxes. For example, region Riqpger1 (hatched
areas in Figure 1) is given by the set of all boxes having contact with the target
region r¢qrget1- Fortunately, this operation is always an overestimation and does
therefore not impact the correctness of the above results. Until now, only the
third operation T3(-) has been implemented. To(+) and T4(+) will follow in further
implementation steps.

Some additional steps are needed to optimize the transition relation for some
corner cases. Namely, these are prevention of long successor vectors, resulting in a
box over-jump, boxes with self-connection and boxes with no transitions to other
boxes due to short successor vectors. The last two conditions are unphysical if
the box does not contain fix points (Section 3.3). As we have already mentioned
in Section 3.1, no explicit time relations are considered. It might be useful or
necessary in future implementations to store not only the transition relation
R C @ x @ but rather this relation combined with the related transition time
delays R C @ x Z x Q where Z denotes the set of all transition time delays used.

4 Model Checking Algorithms

Due to the developed discrete model, the analog system is accessible by discrete
algorithms. In this contribution a CTL model checker will be discussed but the
foregoing approach can also be used for other formal verification approaches.

As we will see, existing model checking tools and languages are not well suited
for the generated models and the description of analog properties. In particular,
the intensively used BDD structures are not helpful for this kind of models,
because the set of states can not efficiently be described by binary state variable
combinations. Therefore, a modified model checker has been developed, based
on the basic CTL algorithms described in [12]. A simple tree structure is used to
store the discrete state regions. There are some algorithmic modifications due to
the special need of the analog model, explained below. The language has been
extended by a minimal set of operations enabling the work on analog models.
Additionally, the results are visualized graphically. The meaning of the CTL
operators is the same as in digital model checkers. Table 1 gives a short syntax
overview on the classical CTL language.

For example the formula © = AF(state;) can be read as follows: All paths
starting in a state within © will eventually reach a state in which state; is true.
To simplify matters, we do not distinguish between a CTL condition and the set
of states that fulfills this condition, both will be named by capital Greek letters.

Since the domain of digital state variables is restricted to boolean values, the
statements a and —a cover the whole domain. As we have seen before, analog
state variables are defined continuously. Thus, the given CTL definition is not
sufficient for describing condition in analog variables. To solve this problem, we
introduce a greater and smaller operator in the language definition (Table 4).
Thereby, half planes can be described in a continuous space e.g. (x1 > —13.2546).

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 409

Table 1. Classical CTL syntax Table 2. CTL syntax extension
p=alpodp|[-g|pod|poUg p=brv|dod|[-¢| o]
a|boolean variable >oU¢|ivd

o |boolean V — or b |continuous variable
operators A — and v |real value
= | - — not * |analog > — greater
> |path E — on some path operators < — smaller
quantifiers A — on all paths iv|inverse time
¢ |temporal X — next-time
operators F — eventually
G — always
U] U — until

The combination of several half planes with boolean operators enables the def-
inition of arbitrary Manhattan polytopes in a continuous n-dimensional space.
Boolean variables are left out in this definition, because only pure analog system
are considered in this contribution. However, an extension to hybrid systems
seems to be possible.

Moreover, we have introduced the inverse time operator iv. It simply inverses
all transition relations with respect to time. By this, we assume a branching
(also known as non-Ockhamist) infinite past. A collection of other past time
definitions and languages can be found in [13]. As we will see in the experimental
results, this operator is useful for some analog properties to be checked. Due to
these extensions, the meaning of all operators has to be reviewed to find out the
necessary changes in known digital or hybrid model checking algorithms.

— If the threshold values v used in the greater/smaller operations are not sub-
division values in the state space, they have to be added and the transition
relation has to be reconstructed due to this change before executing the CTL
formula. This makes the discrete model not only dependent on the analog
system but also on the CTL formula used.

— The boolean operators —, V, and A are obviously defined for state space
regions. However, as we will see later, not only the restricted state space has
to be considered but also the outside area. In this context the definition will
be extended.

— In contrast to the original analog model the discrete model will be nonde-
terministic due to the abstraction of the state space, namely because a state
space region may be connected to several successor regions even without
changing the input values. This does not effect the path quantifier definition
but it has to be considered while using them in a CTL formula. Since the
model is nondeterministic, the inverse time operator does not change the
model structure in respect thereof.

— The last group comprises temporal operators. As we have seen before, the
time step At may vary throughout the state space. Thus, the time quan-

410 Walter Hartong et al.

tifier X has only a qualitative meaning. To enable checking of quantitative
time dependencies the discrete model and the language needs further exten-
sions (e.g. X(3us), see also [14]). The other operations can be used in the
same manner as in digital applications.

Obviously, this language is not very powerful describing analog design spec-
ifications. This is because we want to follow the digital model checking ideas as
far as possible without major changes. It will be shown below that it is possible
to check some analog properties even with this minimal set of operations.

4.1 Border Problems

Consider for example differential equation {4 = (1,0)” } and CTL formula EG(O)
where © = ((z2 > 1.0) & (22 < 2.0)). For this example Equation (3) is easy to

solve symbolically x(tg + dt) = z(to) + fttoﬁdt & dt = x(tg) + (é) ot.

It is obvious, that EX(©) = (©) for all ¢ because a time step causes only
a shift in x; direction and since region © is not restricted there, the EX oper-
ator does not affect that area. Furthermore, EG(O) is the largest fix point of
the sequence {Oy = ©;0,11 = O; AEX(6;)}. Consequently, the theoretical re-
sult of EG(O) is O. If a restricted state space - for example ([=5 .. 5],[~5 .. 5])"
- is applied to this example the result changes dramatically. Using the solution
of z(ty + 0t) we find EX(O) to be ([=5 .. (5 — 6t)],[1 .. 2])". Thus, the largest fix
point for the sequence defining EG is ().

Is that the expected result? To answer this question the meaning of ¥ =
EG(®) has to be studied again: “For each state ¢ within ¥ there is a path
starting in ¢ such that ¥ is invariantly true on this path.” In the given example,
every path leaves the restricted state space after some time but that does not
necessarely mean that ¥ is not fulfilled on that path since ¥ is also restricted
to the given state space. Thus, it has to be defined whether a path leaving the
restricted state space fulfills that condition or not.

In other words, it has to be defined whether the area outside the restricted
state space is part of the actual region or not. In the above example we have
simply assumed that the outside area is not part of the region. Under this as-
sumption the given result is correct. But if we assume the outside area to be

part of the region © = (([—5 N) e Outside) we get EG(O) = 6.

To implement that, an outside area flag is stored for each region used. The
border boxes are treated specially, they keep the value given by the border flag.
As a result, the border boxes are not part of the model checking result and have
to be omitted during interpretation. Every new region to be introduced has an
outside flag set to false. All boolean operations are not only applied to the state
space but also to the outside flag. Thus, it is possible to define all constellations.

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 411

5 Experimental Results

5.1 Biquad Lowpass Filter Example

The first example, a 2"? order Biquad lowpass filter, is shown in Figure 3. The
opamp model has an open loop gain of 10000. The output voltage restriction is
+1.5 V and the maximum output current is 80 mA. Due to these restrictions
the whole system is nonlinear. This circuit has two state variables, namely the
capacitor voltages V.1 and V.s. Using a charge oriented capacitor model will
normally lead to the two charges as state variables. We changed this, because
we found it more convenient to think in voltages than in charges. The corner
frequency w. and the damping factor d are given by w, = v/ RleCngfl and
d = 0.5Chw.(R1 + Ry). We use two different value sets for the resistors and
capacitors, one with w. = 100 s~! and d = 0.5 and the second one at the same
frequency but with d = 2. Thus, we get two equivalent lowpass filters differing
only by the damping factor. The property to be checked in this example is the
occurrence of overshooting in the two filters. Since these properties should be
proved for arbitrary input signals, the appropriate input value model is chosen.
The input signal range is Vi, = [~2 .. 2], so that the nonlinearity due to the
restricted output voltage will effect the system behavior. The state space is
restricted to V1 = [—4 .. 4] and Voo = [-2.5 .. 2.5].

The initial state in this example is assumed to be the DC operating point
at Vj, = 0. The question is: Which states are reachable from this point for
arbitrary input signals within the given range? Instead of a single start point a
start area is used, that is for example a box surrounding the initial point. Next,
operation EF is used to check which states have a path that will eventually reach
the starting area. However, the direction of this operation is wrong. Inverting the
time gives the correct formula {®35 = iv(EF((V2 < 0.5) & (Vo > —0.5) & (Vo1 <
0.5) & (Vo1 > —0.5) & (Vin < 0.5) & (Viyy > —0.5)))}.

This equation is applied to both circuits. The result for the highly damped
circuit is shown in Figure 4. The black box indicates the state space borders.
The input voltage axis is perpendicular to the paper. As expected, the state V,;

out

,

Fig. 3. 2"¢ order lowpass filter Fig. 4. Model checking result @3

412 Walter Hartong et al.

remains within a range of +2 V whereas it has been shown that it reaches higher
levels in the less damped case. However, the output voltage V,,; remains within
the £1.5 V range for both circuits due to the opamp nonlinearities. It turns out
that the opamp output restriction of £1.5 V does not have an impact on this
result because states V.1 and V.o are not restricted by the opamp output.

5.2 Tunnel Diode Oscillator Example

The analog system used in our second example is a simple tunnel diode oscillator
circuit shown in Figure 5. The input voltage V;,, is set to 2.6 V. In this operating
point the circuit starts an oscillation automatically. The bounded state space is
given by Vo =[—0.2 .. 4.4] and I, =[—-0.2 .. 4.0].

According to digital systems a stable oscillation might be proved by the fol-
lowing CTL equation &5 = {AG(AF(I; > 2.2)) & AG(AF(I < 1.6))}. The col-
lection of boxes fulfilling this condition is shown in Figure 6 in light gray. Except
of some border boxes and the middle region, the whole state space is covered.

We can conclude that nearly the whole plane will float into an stable orbit.
The next question might concern the possible orbit geometry. We generate this
by applying @ = {iv(EG(®P5))}. The result $¢ contains the whole orbit calculated
by an ordinary simulation (black line in Figure 6).

6 Conclusion

To apply digital model checking ideas to analog systems a discrete system model
is needed. The main algorithmic task is to develop a state transition model in
such a manner that the main nonlinear and dynamic properties of the analog
system are retained. This is done using an automatic state space subdivision
method and an algorithm developing the transition relation.

The implemented CTL model checker is based on digital algorithms, but it
is extended by some operations, enabling the definition of analog properties in

Fig. 5. Tunnel diode oscillator Fig. 6. Model checking results @5 and Pg

1 2 3 U,

(<

On Discrete Modeling and Model Checking for Nonlinear Analog Systems 413

CTL. Some applications of this language are shown by the experimental results.
However, applying CTL to analog systems, seems even more uncommon than
doing so in digital. It is clear that the language is not sufficient for all ana-
log properties. Especially, explicit time dependent properties, like slew rates or
delays, are not covered in the prototype implementation.

As far as we know, the presented tool is the first approach to model checking
for nonlinear analog systems. That opens a wide range of possibilities in apply-
ing formal methods not only to digital and hybrid systems but also to analog
systems. Therefore, it is a step towards a more formalized analog design flow.

References

1. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proceedings of IEEE (2000 971-984 401, 403, 405

2. Kurshan, R., McMillan, K.: Analysis of digital circuits trough symbolic reduction.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
10 (1991 1356-71 401, 403, 404, 405, 407

3. Dang, T., Maler, O.: Reachability analysis via face lifting. HSCC ’98: Hybrid Sys-
tems: Computation and Control, LNCS (1998 96-109 401

4. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis
of piecewise-linear dynamical systems. HSCC ’00: Hybrid Systems: Computation
and Control, LNCS (2000 76-90 401

5. Hedrich, L., Hartong, W.: Approaches to formal verification of analog circuits. In
Wambacq, P., ed.: Low-Power Design Techniques and CAD Tools for Analog and
RF Intergrated Circuits. Kluwer Academic Publishers, Boston (2001 155-191 401,
406

6. Giinther, M., Feldmann, U.: Cad-based electric circuit modeling in industry, part
is Mathemetical structure and index of network equations. Suveys on Mathematics
for Industry 8 (1999 97-129 402

7. Marz, R.: Numerical methods for differential algebraic equations. Acta Numerica
(1991 141-198 402

8. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind gaio - set oriented
numerical methods for dynamical systems. Ergodic Theory, Analysis, and Efficient
Simulation of Dynamical Systems (eds. B. Fiedler, Springer (2001 145-174 403,
407

9. Henzinger, T., Ho, P.H.: Algorithmic analysis of nonlinear hybrid systems. CAV
’95: International Conference on Computer-Aided Verification, LNCS 939 (1995
225-238 405

10. Neumaier, A.: Interval methods for systems of equations. Cambridge University
Press, Cambridge (1990 406

11. Henzinger, T., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hybrid
systems analysis using interval numerical methods. HSCC ’00: Hybrid Systems:
Computation and Control, LNCS (2000 130-144 406

12. Burch, J., Clarke, E., Long, D., McMillian, K., Dill, D.: Symbolic model checking
for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 13 (1994 401-424 408

13. Laroussinie, F., Schnoebelen, P.: Specification in ctl4past for verification in ctl.
Information and Computation 156 (2000 236-263 409

414 Walter Hartong et al.

14. Emerson, E., Mok, A., Sistla, A., Srinivasan, J.: Quantitytive temporal reasoning.
CAV ’90: International Conference on Computer-Aided Verification, LNCS (1990
136-145 410

	On Discrete Modeling and Model Checking for Nonlinear Analog Systems
	Introduction
	System Description
	Analog Systems
	Transition Systems

	Discrete Model Generation
	Discrete Time Steps
	Input Value Model
	State Space Subdivision
	Transition Relation

	Model Checking Algorithms
	Border Problems

	Experimental Results
	Biquad Lowpass Filter Example
	Tunnel Diode Oscillator Example

	Conclusion

