Practical Methods for Proving Program
Termination

Michael A. Colén and Henny B. Sipma*

Computer Science Department, Stanford University
Stanford, CA 94305-9045
{colon,sipma}@cs.stanford.edu

Abstract. We present two algorithms to prove termination of programs
by synthesizing linear ranking functions. The first uses an invariant gen-
erator based on iterative forward propagation with widening and extracts
ranking functions from the generated invariants by manipulating poly-
hedral cones. It is capable of finding subtle ranking functions which are
linear combinations of many program variables, but is limited to pro-
grams with few variables.

The second, more heuristic, algorithm targets the class of structured pro-
grams with single-variable ranking functions. Its invariant generator uses
a heuristic extrapolation operator to avoid iterative forward propagation
over program loops. For the programs we have considered, this approach
converges faster and the invariants it discovers are sufficiently strong to
imply the existence of ranking functions.

1 Introduction

Proving total program correctness consists of two tasks: proving partial cor-
rectness, that is, proving that the relation between inputs and outputs satisfies
its specification, and proving termination. While many techniques have been
proposed to automatically establish termination of term rewriting systems [9],
logic programs [15] and functional programs [12], the problem of demonstrating
termination of imperative programs has received much less attention. Clearly,
one possible strategy is to reduce the problem to one of the well-studied cases
by program transformation, but such an approach often introduces additional
complexities. For example, when translating an imperative program into a func-
tional program, the recursive functions introduced to encode loops often fail to
terminate for all inputs, necessitating the development of automatic methods to
approximate the domains of these functions [2].

In [1], we presented a method for generating linear ranking functions to
prove termination of program loops. The approach taken was to represent pro-
gram invariants and transition relations as polyhedral cones and to construct

* This research was supported in part by NSF(ITR) grant CCR-01-21403, by NSF
grant CCR-99-00984-001, by ARO grant DAAD19-01-1-0723, and by ARPA/AF
contracts F33615-00-C-1693 and F33615-99-C-3014.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 442-454, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Practical Methods for Proving Program Termination 443

linear ranking functions by manipulating these cones. The method made the
tacit assumption that the loops are unnested. As such, it could generate com-
plex ranking functions for simple control structures, but was unable to construct
even simple ranking functions for complex structures. Furthermore, it could not
establish termination of unnested loops with multiple paths in which different
paths require different ranking functions, i.e., loops which can be proved termi-
nating using lexicographic ranking functions all of whose components are linear.
The aim of the present work is to generalize the approach and address these
shortcomings.

In this paper we propose two algorithms for proving termination of programs.
The first is capable of finding complex linear ranking functions to prove termina-
tion, and uses iterative forward propagation with widening to derive invariants
to justify the ranking functions. The second is more heuristic in nature, but is
faster for structured programs and is capable of handling larger programs.

2 Preliminaries

2.1 Program Representation and Computational Model

We present programs using SPL (Simple Programming Language) [14], a Pascal-
like programming language with well-defined semantics. As an underlying com-
putational model we use transition systems, a flexible first-order representation
of programs.

A program P : (V,L,T, Lo, ©) consists of the following components:

— V, afinite set of program variables; a state o is an assignment to all variables
in V. An assertion is a first-order formula over V.

— L, a finite set of program locations.

— 7, a finite set of transitions, where each transition 7 is represented by a triple
(0,0, p) consisting of a prelocation ¢, a postlocation ¢, and an assertion p
over V and V', where V' denote the variables in the next state. By post(p,)
we denote the postcondition of T with respect to an assertion ¢, which is
defined as the set of states reachable by taking transition 7 from a state
satisfying ¢, that is, the set of states satisfying IV5 . p(Vo, V) A o(Vo).

— Lo C L, the set of initial locations.

— O, an assertion characterizing the initial states.

A configuration is a pair (£, o) consisting of a location and a state. A compu-
tation m is a potentially infinite sequence (¢y,0¢), (¢1,01),... of configurations
such that £y is an initial location, og = ©, and for each adjacent pair of config-
urations ({;,0;) and (€;11,0,11), there exists a transition 7 = (¢;,¢;11, p) such
that 0i,04+4+1 ': pP.

2.2 Flow Graphs

Flow graphs are convenient for representing the control structure of programs.
Recall that a directed graph G = (V, E) consists of a finite set of vertices V' and

444 Michael A. Colén and Henny B. Sipma

a finite set of edges E, where each edge of F is a pair (v,v') of vertices of V. A
path of G is a potentially infinite sequence vy, va, ... of vertices such that for all
i >0, (v;,vi41) € E. A finite path vy,...,v, is a cycle if v; = v,. A graph is
acyclic if none of its paths are cycles and strongly-connected if there is a path
between every pair of vertices. A strongly-connected subgraph (SCS) of G is a
subgraph of G which is strongly connected. An scs S is a mazimal SCS (MSCS)
if it is not a proper subgraph of an scs of G. An MSCS consisting of a single
vertex and no edges is said to be trivial.

A flow graph is a directed graph in which a subset of the vertices are distin-
guished as being initial. A path of a flow graph is said to be proper if its first
vertex is initial. The control flow graph (CFG) of a program is the flow graph
whose vertices are the control locations and which contains an edge (¢,¢') for
each transition 7 = (£, ¢, p). The CFG of a program can be viewed as an ab-
straction of the program in which all variables are ignored: each computation
of the program induces a path in the flow graph. However, not all paths of the
flow graph correspond to computations of the program. Invariants and ranking
functions are needed to refine this abstraction.

2.3 Ranking Functions

A binary relation < is called well-founded over a domain D if there is no infinite
descending chain, that is, no infinite sequence of elements dy, d1, ds, . . . of D such
that d; > d;y1 for all ¢ > 0. The most commonly used well-founded domain is
that of the natural numbers with the > relation.

Well-founded relations can be used to show that a certain set of program
locations cannot be visited infinitely often. Let 7 be an infinite computation of a
program P. Since there are only finitely many locations, m must visit some subset
of the locations infinitely often. This subset must be an scs of the CrG of P. To
prove termination of the program, then, it suffices to show that no scs of the
CFG can be visited infinitely often. To do so, we exhibit a ranking function for
each scs of the CFG.

A ranking function § for an Scs S is a mapping from program states into
a well-founded domain such that no transition associated with an edge of S
increases the measure assigned by ¢§, and some transition decreases it. Thus
the existence of a ranking function for S implies that any infinite computation
can take the decreasing transitions only finitely many times, and therefore, if
it remains within S, it must eventually confine itself to a proper sub-scs of S
which does not contain the decreasing transitions. If removal of these decreasing
transitions from the scs results in an acyclic graph, the scs admits no infinite
computations. If for each SCs of the CFG we can find a ranking function, we have
shown that the program terminates.

2.4 Invariant Assertions

An assertion 7 is said to be invariant at location £ of a program P if, for any
computation 7 of P, Z holds whenever 7 reaches ¢. An invariant map p is any

Practical Methods for Proving Program Termination 445

assignment of assertions to the locations of P such that p(¢) is invariant at .
An invariant map p is said to be inductive if, for every transition 7 = (£, ¢', p),
post(p, u(¢)) E p(€). Thus inductive invariant maps can be verified locally,
provided the assertion language is decidable.

It is often possible to compute non-trivial invariants for a program by iter-
ative forward propagation in an abstract domain, a method known as abstract
interpretation [6]. Given a program P and a map pu, the operator F is defined
as follows:

F(p. P) = J{¢ = 6.0}
leL
with
Ue,er pyer Post(p, u(£)) WO if ' is initial,
Ue,er,pyer POSt(p, u(0)) otherwise

g(‘u’gl) - {

Iterative application of F to an initial map assigning false to each location yields
the strongest map of inductive invariants expressible in the given assertion lan-
guage, provided it converges. If the assertion language contains infinite ascending
chains, a heuristic widening operator is employed to ensure convergence for pro-
grams containing loops. The use of abstract interpretation to generate invariants
expressible as systems of linear constraints was first proposed in [7].

When reasoning about infinite computations, it is often necessary to make
use of assertions that may not hold every time a location is reached, but are
guaranteed to hold in the limit. Given an scs S with location ¢, an assertion
@ is said to be tail invariant at £ if, for any infinite computation 7 that never
leaves S, ¢ fails to hold when 7 reaches ¢ only finitely many times. In other words,
¢ is an invariant of a suffix (or tail) of 7. Tail invariants allow us to ignore the
program states in the first pass of iterative structures such as repeat — until
loops, in which the loop condition is evaluated at the end of each iteration.

Given an SCS S and an invariant map u, i can be strengthened to a map of
tail invariants of S by forward propagation restricted to S. With each iteration,
F is applied to p and the resulting map is conjoined to the invariants of p. It
is sound, and usually sufficient, to terminate the forward propagation before a
fixed point is reached.

2.5 Polyhedral Cones and Systems of Linear Constraints

Our invariant generator and our algorithm for generating ranking functions are
based on polyhedral cones and systems of linear constraints.

A vector w is a linear combination of vectors vy, ..., v, if w = A1+ -+ A vn
and a conic combination if A\1,..., A, > 0. The set of linear combinations of a
set V' is denoted Lin(V'), while Con(V') denotes its conic combinations. A cone
is any set of vectors closed under conic combination. A pair (L, R) of sets of
vectors is a generator of the cone C if C' = Lin(L) 4+ Con(R). The vectors in L
are known as the lines of the generator, while the members of R are the rays.
A cone is polyhedral if it possesses a finite generator. In this paper, we consider
only polyhedral cones.

446 Michael A. Colén and Henny B. Sipma

The polar C* of a cone C' is the set of vectors forming non-acute angles with
every member of C, i.e., C* = {w | w-v <0 for all v € C'}. A cone is polyhedral
iff its polar is polyhedral. A double description is a pair of cones (C, D) satisfying
D = C*, and the double description method is an algorithm for computing polars
of polyhedral cones based on this dual representation [10].

A linear constraint is an assertion of the form ayx1+. .. +agrqg+ 0 p 0, where
pis = or <. A conjunction of linear constraints is known as a system. The theory
of a system S is the set of constraints satisfied by every solution of S. It was
proven by Farkas that the theory of a system S of linear constraints is the cone
it generates, where the equalities are interpreted as lines and the inequalities are
treated as rays.

The polar of a system S of linear constraints viewed as a cone admits two
interpretations: It can be seen as the generator of solutions of S or as a homo-
geneous system of constraints on the coefficients of the consequences of S. This
second interpretation allows us to impose syntactic restrictions on the conse-
quences of a system. For example, a variable x; can be eliminated from a system
by adding the constraint «; = 0 to its polar. That is, a; = 0 is added to the
cone D in the representation (C, D) of S using the double description method
pair (C’, D"} with C’ representing precisely those consequences of S in which the
variable z; does not appear.! Given two systems S; and So, their conver hull
S1 U Sy, i.e., the intersection of their consequences, can be computed by adding
the constraints of the polar of S5 to the polar of Sy.

3 An Algorithm for Generating Ranking Functions

3.1 Algorithm

The algorithm, of which a schematic outline is shown in Figure 1, consists of
two phases. The first phase prepares the program for computing the ranking
functions: invariants of P are generated and its CFG G is extracted. Then G is
pruned by eliminating vertices from G that have an invariant of false and edges
that can never be taken due to the unsatisfiability of the enabling condition of
the corresponding transition relation given the generated invariants.

The ranking functions are computed in the second phase by the mutually re-
cursive procedures rank1 and rank2. Given a flow graph G, rank1l decomposes
it into its MSCs’s and invokes rank2 on each non-trivial Mscs. If all MScs’s are
trivial, rank1 succeeds immediately.

Given an MScCS S, rank2 first partitions the variables of the program into
those that are modified by some transition of S and those that are preserved by
all transitions of S. Next it computes the tail invariants. It then computes the
set N of all linear expressions over the modified variables that do not increase
under any transition of S. To do so, it first computes, for each transition 7 =
(£, 2, p) of S, the set of expressions e over modified variables such that

N(E)/\p):eze/a

1 In essence, the double description method is used to simulate Fourier’s elimination.

Practical Methods for Proving Program Termination 447

Input: program P

Output: ranking functions for each scs or fail

1. Generate invariants p for P; Extract the cr¢ G of P; Prune G using pu
2. call rank1(G)

procedure rankl(G)
1. decompose G into a list L of MSCS’s
2. for each non-trivial S € L call rank2(S)

procedure rank2(S)

1. partition the variables for S

generate tail invariants of S

compute set N of non-increasing expressions for S

for each 7 € S do

5. compute the set D of bounded decreasing expressions for 7

6.if NN D #0do
7. output any expression of N N D as a ranking function for §
8. remove 7 from S

9. if no transitions were removed from S then fail

10. call rank1(S)

Ll e N

Fig. 1. General algorithm for generating ranking functions

where ¢/ denotes e with unprimed variables replaced by their primed versions.
The computation is performed by representing the systems of linear inequalities
w(¢) and p as polyhedral cones, taking their union, then adding equations to
the polar of the combined system, to eliminate the unmodified variables and to
ensure that the primed and unprimed versions of the same modified variable
appear with opposite sign. Projecting this cone onto the primed variables then
yields the generator of the non-increasing linear expressions for 7. (The precise
details of this construction are presented in [4].) Taking the intersection of these
cones over all 7 € S yields the set of expressions that are non-increasing over
the entire MSCs.

Then, rank2 computes for each transition 7 = (£, ¢, p) the set of expressions
that both decrease under and are bounded from below by 7. That is, it computes
the set of expressions e over the modified variables for which there exists a
positive constant § and an expression A over the unmodified variables such that

p)AplEe>e+8 and pul)ApEe > A

The restriction of the lower bound A to unmodified variables is necessary to
ensure that the range of the purported ranking function is in fact well-founded.
Again, rank2 performs this computation by manipulating systems of linear in-
equalities represented as polyhedral cones.

Finally, for each transition 7 possessing an expression d which is bounded and
decreasing under 7 and non-increasing over the entire MSCS S, rank2 outputs &
as a ranking function for S and removes 7 from S. If no such transition exists,
rank2 fails. Otherwise, rank2 invokes rank1 to find ranking functions for the
MSCs’s created by the removal of these transitions.

448 Michael A. Colén and Henny B. Sipma

in n: integer where n > 0
in A:array[l...n] of integer
local i, j : integer

lo: 1:=n
¢1: while 7 > 0 do
ly: j:=0

l3: while j <i—1 do
Ly if A[j] > Alj + 1] then
ts: (A, Al + 1)) := (Al + 1], A[j)
le: 7:=75+1
br: 4 =1—1

Fig. 2. Program BUBBLESORT

Notice that it is sound to make use of tail invariants of an scs S when
generating its ranking functions. If § can be shown to be both non-increasing
over S and decreasing under 7 assuming tail invariants, then for any infinite
computation which remains in S, after finitely many steps in which ¢ changes
arbitrarily, § will attain a maximum value and then decrease whenever 7 is taken.

3.2 Examples

Consider the program BUBBLESORT shown in Figure 2. rankl decomposes the
CFG G of this program into the non-trivial MSCs Sy : {¢1, ..., ¢z}, and the trivial
MSCs fy. Given Si, rank2 finds that ¢ is non-increasing over the Mscs and is
bounded and decreasing under 77, using the invariant ¢ = 5 A j > 0 generated
for ¢7.

Eliminating 7; and decomposing the resulting graph yields a single new non-
trivial Mscs Se : {l3...0lg}. For S, rank2 finds that —j is non-increasing
over the Mscs and bounded and decreasing under 7. Note that partitioning
the variables enables 7 to appear in the lower bound on —j. Otherwise, the
ranking function 7 — j, involving more than one variable, would be needed to
show termination of Ss.

Figure 3.2 shows a program with a slightly more complicated control struc-
ture which was derived from McCarthy’s 91 function [13]. Given input z, the
function returns —10 if x > 100 and 91 otherwise. For this program, rank2 gen-
erates —y; for the Mscs {/s, ¢4} and —y; + 11 * yo for the Mscs {{5 ... ¢11}.

3.3 Some Experimental Results

We have implemented our algorithm in Java using the invariant generator and
polyhedral cone library of STeP [1] and have applied it to several programs taken
from [13] and [5], obtaining the results presented in Table 1. Note that most of
the execution time is spent in the invariant generator.

Practical Methods for Proving Program Termination 449

Table 1. Run times for general algorithm on a 1GHz Xeon Pentium III processor
with 2GB RAM, running Linux and Java 1.3.1

Program no. of no. of no. of inv.gen. rank gen.
variables statements loops (msec) (msec)
BUBBLESORT 3 8 2 88 101
PERFECT 4 10 2 2328 149
MCCARTHY91 4 11 2 235 154
DETERMINANT 5 13 3 570 351
MATRIX-CHAIN 5 19 4 836 504
LUP-DECOMPOSITION 4 28 5 691 439

in x : integer
local y1,y2, 2z : integer

bo: (y1,y2) = (x,1);
£1: if (y1 > 100) then ¢2: z: =y — 10
else
[¢5: while y1 <100 do 44: (y1,y2) := (y1 + 11,92 + 1);
l5: while y2 > 1 do
Cs: (y1,y2) == (y1 — 10,92 — 1);
l7: if y1 > 100 A y2 =1 then f5: z:=y; — 10
else
ly: if y1 > 100 then fi0: (y1,y2) := (y1 — 10,32 — 1);
Oz (y1,y2) == (y1 + 11,92 + 1)

Fig. 3. Program derived from McCarthy’s 91 function

Encouraged by these results, we then applied the algorithm to a larger pro-
gram — an implementation of mergesort taken from [16] and shown in Fig.6. For
this example, the initial results were disappointing. The invariant generator failed
to converge in a reasonable amount of time. We then re-ran the algorithm, re-
stricting the invariant generator to consider only the variables ¢, m, n,p, ¢ and r,
which we knew a priori to be the only variables relevant to termination. With
this restriction, the invariant generator converged in 5 seconds, generating in-
variants sufficiently strong to demonstrate termination in 2.5 sec. The generated
ranking functions are —p, m, r, ¢, and —i for the loops at lo, {14, {33, {35, and {49,
respectively, and the ranking functions ¢ and r for the loop at fo3.

Unsatisfied with an algorithm that requires guidance in the form of a list of
relevant variables to ensure convergence for a somewhat large, but not unduly
complex program, we devised a more heuristic algorithm targeted at structured
programs with simple ranking functions, which we present in the next section.

450 Michael A. Colén and Henny B. Sipma

Input: program P

Output: invariant map p

1. construct cFG G of P; initialize p to 0
2. call inv1(G)

procedure invl(G)

1. decompose G into an ordered list L of MSCS’s

2. for each S € L in order do
3. if S is trivial then propagate assertions to S’s vertex
4. else call inv2(S)

procedure inv2(S)

1. let v be the header of S

2. if p(v) is undefined then
3. forward propagate assertions to v
4. extrapolate p(v) over S

5. remove from S all edges to v

6. call inv1(S)

Fig. 4. Algorithm for generating invariants

4 An Alternate Algorithm
for Generating Ranking Functions

Our heuristic algorithm is based on two observations concerning the programs we
have considered. First, they are all written in structured programming languages
and, therefore, have reducible CFG’s. Recall that a vertex v dominates a vertex w
if every proper path to w passes through v; a flow graph G is reducible if every
SCcs S contains a vertex v that dominates it, called its header. Reducible flow
graphs are well-structured: Their loops are properly nested.

Based on this observation, we devised an invariant generator that takes ad-
vantage of reducible CrG’s. The algorithm, shown in Figure 4, propagates as-
sertions through the CcrG. However, upon encountering a non-trivial scs, rather
than iterating with widening until convergence, the algorithm attempts to ex-
trapolate an over-approximation of the fixed point, which it then propagates into
and past the scs.

The extrapolation algorithm used is simple. Given an assertion, represented
as a system of linear inequalities, it first computes those consequences of the
system involving only variables not modified in the scs, that is, it eliminates
the modified variables. Then an attempt is made to refine the (now invariant)
assertion by preserving any bounds on the modified variables implied by the
original system. The approach taken is to determine for each modified variable
whether the original system implies a bound on that variable which is linear in
the unmodified variables and which is preserved by each transition. If so, the
approximation is strengthened by including this bound.

The second observation concerning the programs we consider is that, pro-
vided care is taken to distinguish between those variables that are modified in

Practical Methods for Proving Program Termination 451

Input: program P

Output: ranking functions for each scs

1. Generate invariants p for P; Extract CFG G of P; Prune G using u
2. call rank1(G)

3. if any scs does not have a ranking function, fail

procedure rankl(G)
1. decompose G into a list L of MSCS’s
2. for each non-trivial S € L call rank2(.S)

procedure rank2(S)
1. partition the variables for S
2. generate tail invariants of S
3. for each variable v modified in S do
4. if v is non-increasing/non-decreasing over S then
5. for each 7 € S do
6. if v is bounded and decreasing/increasing under 7 then
7. record T and v/—v
8. remove from S all edges to its header
9. call rank1(S)

Fig. 5. Algorithm for generating ranking functions

an SCs and those that are preserved, all sCs’s of these programs possess single-
variable ranking functions. Thus, a heuristic algorithm that restricts itself to
ranking functions of this form is likely to prove termination of most loops while
avoiding the overhead of manipulating polyhedral cones. An algorithm for gen-
erating ranking functions incorporating this idea is presented in Figure 5.

The algorithm visits the loops of the program and attempts to find single-
variable ranking functions that justify the elimination of transitions of the loop
that are not transitions of any inner loop. It records, for any ranking function
discovered, both the function and the set of transitions whose removal is justi-
fied by the function. It then breaks all cycles of the loop from the loop header
and invokes itself recursively. Note that, unlike the algorithm of Section 3, this
algorithm continues to search for ranking functions of inner loops even if it fails
to prove termination of the outer loops. The structure of reducible CFG’s makes
this possible. If, after visiting all loops, removing the decreasing transitions from
the CFG results in an acyclic graph, the algorithm reports success.

We have implemented this second algorithm and applied it to the programs
considered in Section 3, obtaining the results shown in Table 2. As expected,
this algorithm fails on MCCARTHY91, since no single-variable ranking function
exists for the second Mscs. However, invariant generation is much faster than
the iterative forward propagation with widening used in the previous section.

452 Michael A. Colén and Henny B. Sipma

in n : integer where n > 0

local i, j,k,l,t : integer

local h,m,p,q,r : integer

local up : boolean

local a : array [1..2 x n] of integer

lo: up:=T;
li: p:=1;

l2: repeat

[l3: h:=1;

Ly: m = n;

l5: if up then
[ZG: i:=1; br: j:=mn; ls: k:=n+1; ly: l::Q*n]
else
[élo:kzzl; lii:l:=mn; Li2:i:=n+1; €13:j::2*n];

l14: repeat

[f15:if m > p then (16:q := pelse fli17:q := m;
lig:m :=m — q;

l19:if m > p then lyo: 1 :=pelse fla1:1 :=m;
lag:m :=m —r;

la3:while (¢ >0 A r >0) do
[£24:if a[i] < a[j] then

las - ak] == alil;
log:k:=k+h; flar:i:=i+1; flag:q:=q—1
else

lag : ak] == alj];
l30:k:=k+h; l31:j:=75—1; lag:ir:=r—1

l33: while (r > 0) do
53410,[]{] = a[j]; .
lss:k:=k+h; leg:ji=j—1; Lar:ir=r—1]’

l3s:while (¢ > 0) do
U39 : alk] = ali]; .
fao:k:=Fk+h; lun:i:=i+1; lip:q:=q—1]’

Wag:h = —h; Llaa:t:=k; Llas:k:=1; las:l:=1
until m < 0;

a7 up :=lup; Llag:p:=2x*p;
until p > n;

l49 :if lup then
650 1= 1;
/51 :while i <n do
[€52 cafi] :==afi+n); lo3:i:=d+ 1]

Fig. 6. Program MERGESORT

Practical Methods for Proving Program Termination 453

Table 2. Run times for heuristic algorithm on a 1GHz Xeon Pentium III pro-
cessor with 2GB RAM, running Linux and Java 1.3.1

Program no. of no. of no. of inv.gen. rank gen.
variables statements loops (msec) (msec)
BUBBLESORT 3 8 2 67 72
PERFECT 4 10 2 76 75
MCCARTHY91 4 11 2 - -
DETERMINANT 5 13 3 169 186
MATRIX-CHAIN 5 19 4 216 233
LUP-DECOMPOSITION 4 28 5 186 208
MERGESORT 11 54 6 2665 3781

5 Conclusions

We present two algorithms to prove termination of programs. The first, more
powerful algorithm is capable of finding subtle ranking functions which are linear
combinations of many program variables, but is limited to short programs with
few variables. The second, more heuristic algorithm, finds single-variable ranking
functions in structured programs of larger size.

The approach taken by our first method bears resemblance to methods for
automatically synthesizing polynomial interpretations [9] for establishing termi-
nation of term rewriting systems. For example, [11] extracts a system of non-
linear constraints on the coefficients of low-degree polynomials which guarantee
correctness, then uses a combination of heuristic instantiation and a variant
of cylindrical algebraic decomposition [3] to solve these constraints. Our algo-
rithm can be seen as employing the double description method to solve a system
of linear constraints on the coefficients of a linear expression which guarantee
monotonicity of the defined function and the well-foundedness of its range. Our
second method is similar to the heuristic approach proposed in [8], which identi-
fies candidate single-variable ranking functions based on bounds appearing in the
program, then verifies them using decision procedures. Our heuristic algorithm
combines these two steps, using the double description method as a decision
procedure. In addition, by making use of an invariant generator, our algorithm
is able to discover ranking functions whose bounds do not appear explicitly in
the program, but are implicit.

We see the utility of our algorithms in their potential to be incorporated into
light-weight static analysis tools to identify potentially nonterminating loops.
Preliminary analysis of a Web server, implemented by some 30,000 lines of Java
code, indicated that one third of the loops could be proved terminating directly
with our methods. Combined with static analysis to identify loop invariants our
methods would be able to handle about half of the loops. If in addition we
augmented our methods with some simple mechanisms to keep track of the size
of collections, more than 80% of the loops could be handled. Thus, incorporated
in an analysis tool, our methods could potentially relieve the programmer from
checking 80% of the loops manually, if termination was a critical requirement.

454

Michael A. Colén and Henny B. Sipma

References

10.

11.

12.

13.
14.

15.

16.

. Nikolaj S. Bjgrner, Anca Browne, Michael Colén, Bernd Finkbeiner, Zohar Manna,

Henny B. Sipma, and Tomds E. Uribe. Verifying temporal properties of reactive
systems: A STeP tutorial. Formal Methods in System Design, 16(3):227-270, June
2000. 448

. J. Brauburger and J. Giesl. Approximating the domains of functional and imper-

ative programs. Science of Computer Programming, 35:113-136, 1999. 442

G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In H. Brakhage, editor, Proc. Second GI Conf. Autamata Theory
and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages
134-183, 1975. 453

Michael Col6n and Henny Sipma. Synthesis of linear ranking functions. In Tiziana
Margaria and Wang Yi, editors, 7th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), volume 2031 of
LNCS, pages 67-81. Springer Verlag, April 2001. 442, 447

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill,
New York, 1990. 448

Patrick Cousot and Rhadia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In 4" ACM Symp. Princ. of Prog. Lang., pages 238-252. ACM Press, 1977. 445
Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear restraints
among the variables of a program. In 5* ACM Symp. Princ. of Prog. Lang., pages
84-97, January 1978. 445

Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic gen-
eration of ranking functions. In Workshop on Advances in Verification (WAVe’00),
pages 1-8, 2000. 453

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69—
116, 1987. 442, 453

K. Fukuda and A. Prodon. Double description method revisited. In Combinatorics
and Computer Science, volume 1120 of Lecture Notes in Computer Science, pages
91-111. Springer-Verlag, 1996. 446

J. Giesl. Generating polynomial orderings for termination proofs. In J. Hsiang,
editor, Proc. 6th Intl. Conf. Rewriting Techniques and Applications, volume 914 of
Lecture Notes in Computer Science, pages 426—431. Springer-Verlag, 1995. 453
J. Giesl, C. Walther, and J. Brauburger. Termination analysis for functional pro-
grams. In W. Bibel and P. H. Schmitt, editors, Automated Deduction — A Basis
for Applications, Volume III: Applications, chapter 6, pages 135-164. Kluwer Aca-
demic, 1998. 442

Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974. 448
Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995. 443

D. de Schreye and S. Decorte. Termination of logic programs: The never ending
story. Journal of Logic Programming, 19, 20:199-260, 1994. 442

Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.
449

	Practical Methods for Proving Program Termination
	Introduction
	Preliminaries
	Program Representation and Computational Model
	Flow Graphs
	Ranking Functions
	Invariant Assertions
	Polyhedral Cones and Systems of Linear Constraints

	An Algorithm for Generating Ranking Functions
	Algorithm
	Examples
	Some Experimental Results

	An Alternate Algorithm for Generating Ranking Functions
	Conclusions

