Abstract
In this paper we comparatively study three MAP factor estimate approaches, i.e., iterative fixed posteriori approximation, gradient descent approach, and conjugate gradient algorithm, for the non-Gaussian factor analysis (NFA). With the so-called Gaussian approximation as initialization, the iterative fixed posteriori approximation is empirically found to be the best one among them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xu, L.: Bayesian kullback ying-yang dependence reduction theory. Neurocomputing 19 (1998) 223–257
Xu, L.: Byy harmony learning, independent state space and generalized apt financial analysis. IEEE Transaction on Neural Network 12 (2001) 822-849
Liu, Z.Y., Xu, L.: On convergence of an iterative factor estimate algorithm for the nfa model. ICANN’02 (2002)
McCormick, G.P., Ritter, K.: Alternative proof of the convergence properties of the conjugate gradient method. J. of Opti. Theo. and Appl. 13 (1974) 497–518
Fletcher, R.: Practical Methods of Optimization. John Wiley and Sons. (1987)
Kelley, C.T.: Iterative Methods for Optimization. AM, PA, USA(1999)
Wu, C.: On the convergence properties of the em algorithm. The Annals of Statistics 11 (1983) 95–103
Ma, J., Xu, L., Jordan, M.I.: Asymptotic convergence rate of the em algorithm for gaussian mixtures. Neural Computation 12 (2000) 2881–2907
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Z., Xu, L. (2002). A Comparative Study on Three MAP Factor Estimate Approaches for NFA. In: Yin, H., Allinson, N., Freeman, R., Keane, J., Hubbard, S. (eds) Intelligent Data Engineering and Automated Learning — IDEAL 2002. IDEAL 2002. Lecture Notes in Computer Science, vol 2412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45675-9_55
Download citation
DOI: https://doi.org/10.1007/3-540-45675-9_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44025-3
Online ISBN: 978-3-540-45675-9
eBook Packages: Springer Book Archive