Abstract
Proof critics are a technology from the proof planning paradigm. They examine failed proof attempts in order to extract information which can be used to generate a patch which will allow the proof to go through.
We consider the proof of the “whisky problem”, a challenge problem from the domain of temporal logic. The proof requires a generalisation of the original conjecture and we examine two proof critics which can be used to create this generalisation. Using these critics we believe we have produced the first automatic proofs of this challenge problem.
We use this example to motivate a comparison of the two critics and propose that there is a place for specialist critics as well as powerful general critics. In particular we advocate the development of critics that do not use meta-variables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of Automated Reasoning, 16(1–2):147–180, 1996.
A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Overbeek, editors, 9th Conference on Automated Deduction, pages 111–120. Springer-Verlag, 1988. Longer version available from Edinburgh as DAI Research Paper No. 349.
A. Bundy. The automation of proof by mathematical induction. In A Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, Volume 1. Elsevier, 2001.
A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993. Also available from Edinburgh as DAI Research Paper No. 567.
A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M.E. Stickel, editor, 10th International Conference on Automated Deduction, pages 647–648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available from Edinburgh as DAI Research Paper 507.
C. Castellini and A. Smaill. Tactic-based theorem proving in first-order modal and temporal logics. In IJCAR 2001, workshop t10, 2001.
A. Degtyarev and M. Fisher. Towards first-order temporal resolution. In F. Baader, G. Brewka, and T. Eiter, editors, KI 2001: Advances in Artificial Intelligence, Joint German/Austrian Conference on AI, Vienna, Austria, September 19–21, 2001, Proceedings, volume 2174 of Lecture Notes in Computer Science. Springer, 2001.
L. A. Dennis, A. Bundy, and I. Green. Making a productive use of failure to generate witness for coinduction from divergent proof attempts. Annals of Mathematics and Artificial Intelligence, 29:99–138, 2000. Also available from Edinburgh as Informatics Report RR0004.
M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on Computational Logic, 1(4), 2001.
D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects. Oxford University Press, 1994.
A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Automated Reasoning, 16(1–2):79–111, 1996. Also available as DAI Research Paper No 716, Dept. of Artificial Intelligence, Edinburgh.
C. B. Jones. Software Development: A Rigorous Approach. Prentice-Hall international series in Computer Science. Prentice-Hall, 1980.
J. Richardson and A. Smaill. Continuations of proof strategies. In M.P. Bonacina and B. Gramlich, editors, Proc. 4th International Workshop on Strategies in Automated Deduction (STRATEGIES 2001), Siena, Italy, june 2001. Available from http://www.logic.at/strategies/strategies01/.
J.D.C. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-order logic with lambda-clam. In C. Kirchner and H. Kirchner, editors, Conference on Automated Deduction (CADE’98), volume 1421 of Lecture Notes in Computer Science, pages 129–133. Springer-Verlag, 1998.
A. Smaill and I. Green. Higher-order annotated terms for proof search. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th International Conference, TPHOLs’96, volume 1275 of Lecture Notes in Computer Science, pages 399–414, Turku, Finland, 1996. Springer-Verlag. Also available from Edinburgh as DAI Research Paper 799.
T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence Research, 4:209–235, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dennis, L.A., Bundy, A. (2002). A Comparison of Two Proof Critics: Power vs. Robustness. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2002. Lecture Notes in Computer Science, vol 2410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45685-6_13
Download citation
DOI: https://doi.org/10.1007/3-540-45685-6_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44039-0
Online ISBN: 978-3-540-45685-8
eBook Packages: Springer Book Archive