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Abstract. We describe the operational and denotational semantics of
a small imperative language in type theory with inductive and recursive
definitions. The operational semantics is given by natural inference rules,
implemented as an inductive relation. The realization of the denotational
semantics is more delicate: The nature of the language imposes a few dif-
ficulties on us. First, the language is Turing-complete, and therefore the
interpretation function we consider is necessarily partial. Second, the
language contains strict sequential operators, and therefore the function
necessarily exhibits nested recursion. Our solution combines and extends
recent work by the authors and others on the treatment of general re-
cursive functions and partial and nested recursive functions. The first
new result is a technique to encode the approach of Bove and Capretta
for partial and nested recursive functions in type theories that do not
provide simultaneous induction-recursion. A second result is a clear un-
derstanding of the characterization of the definition domain for general
recursive functions, a key aspect in the approach by iteration of Balaa
and Bertot. In this respect, the work on operational semantics is a mean-
ingful example, but the applicability of the technique should extend to
other circumstances where complex recursive functions need to be de-
scribed formally.

1 Introduction

There are two main kinds of semantics for programming languages.

Operational semantics consists in describing the steps of the computation of
a program by giving formal rules to derive judgments of the form (p,a) ~ r, to
be read as “the program p, when applied to the input a, terminates and produces
the output r”.

Denotational semantics consists in giving a mathematical meaning to data
and programs, specifically interpreting data (input and output) as elements of
certain domains and programs as functions on those domains; then the fact that
the program p applied to the input a gives r as result is expressed by the equality
[pl([a]) = [r], where [—] is the interpretation.

Our main goal is to develop operational and denotational semantics inside
type theory, to implement them in the proof-assistant Coq [12], and to prove
their main properties formally. The most important result in this respect is a
soundness and completeness theorem stating that operational and denotational
semantics agree.



The implementation of operational semantics is straightforward: The deriva-
tion system is formalized as an inductive relation whose constructors are direct
rewording of the derivation rules.

The implementation of denotational semantics is much more delicate. Tra-
ditionally, programs are interpreted as partial functions, since they may diverge
on certain inputs. However, all function of type theory are total. The problem
of representing partial functions in a total setting has been the topic of recent
work by several authors [7, 5, 13,4, 14]. A standard way of solving it is to restrict
the domain to those elements that are interpretations of inputs on which the
program terminates and then interpret the program as a total function on the
restricted domain. There are different approaches to the characterization of the
restricted domain. Another approach is to lift the co-domain by adding a bottom
element, this approach is not applicable here because the expressive power of the
programming language imposes a limit to computable functions.

Since the domain depends on the definition of the function, a direct formal-
ization needs to define domain and function simultaneously. This is not possible
in standard type theory, but can be achieved if we extend it with Dybjer’s si-
multaneous induction-recursion [6]. This is the approach adopted in [4].

An alternative way, adopted by Balaa and Bertot in [1], sees the partial
function as a fixed point of an operator F' that maps total functions to total
functions. It can be approximated by a finite number of iterations of F' on an
arbitrary base function. The domain can be defined as the set of those elements
for which the iteration of F’ stabilizes after a finite number of steps independently
of the base function.

The drawback of the approach of [4] is that it is not viable in standard type
theories (that is, without Dybjer’s schema). The drawback of the approach of [1]
is that the defined domain is the domain of a fixed point of F' that is not in general
the least fixed point. This maybe correct for lazy functional languages (call by
name), but is incorrect for strict functional languages (call by value), where we
need the least fixed point. The interpretation of an imperative programming
language is essentially strict and therefore the domain is too large: The function
is defined for values on which the program does not terminate.

Here we combine the two approaches of [4] and [1] by defining the domain in
a way similar to that of [4], but disentangling the mutual dependence of domain
and function by using the iteration of the functional F' with a variable index in
place of the yet undefined function.

We claim two main results. First, we develop denotational semantics in type
theory. Second, we model the accessibility method in a weaker system, that is,
without using simultaneous induction-recursion.

Here is the structure of the paper.

In Section 2 we define the simple imperative programming language IMP.
We give an informal description of its operational and denotational semantics.
We formalize the operational semantics by an inductive relation. We explain the
difficulties related to the implementation of the denotational semantics.



In Section 3 we describe the iteration method. We point out the difficulty in
characterizing the domain of the interpretation function by the convergence of
the iterations.

In Section 4 we give the denotational semantics using the accessibility method.
We combine it with the iteration technique to formalize nested recursion without
the use of simultaneous induction-recursion.

All the definitions have been implemented in Coq and all the results proved
formally in it. We use here an informal mathematical notation, rather than giv-
ing Coq code. There is a direct correspondence between this notation and the
Coq formalization. Using the PCoq graphical interface (available on the web at
the location http://www-sop.inria.fr/lemme/pcoq/index.html), we also im-
plemented some of this more intuitive notation. The Coq files of the development
are on the web at http://www-sop.inria.fr/lemme/Kuntal.Das_Barman/imp/.

2 IMP and its semantics

Winskel [15] presents a small programming language IMP with while loops. IMP
is a simple imperative language with integers, truth values true and false, memory
locations to store the integers, arithmetic expressions, boolean expressions and
commands. The formation rules are

arithmetic expressions: @ :=n | X | ag+ a1 | ap — a1 | ap * ay;
boolean expressions: b ::= true | false | ap = a1 | ap < ay | =b | by V b1 | by A by;
commands: ¢ ::=skip | X « a | ¢o; ¢y | if b then ¢ else ¢; | while b do ¢

where n ranges over integers, X ranges over locations, a ranges over arithmetic
expressions, b ranges over boolean expressions and ¢ ranges over commands.

We formalize it in Coq by three inductive types AExp, BExp, and Command.

For simplicity, we work with natural numbers instead of integers. We do
0, as it has no significant importance in the semantics of IMP. Locations are
also represented by natural numbers. One should not confuse the natural number
denoting a location with the natural number contained in the location. Therefore,
in the definition of AExp, we denote the constant value n by Num(n) and the
memory location with address v by Loc(v)

We see commands as state transformers, where a state is a map from memory
locations to natural numbers. The map is in general partial, indeed it is defined
only on a finite number of locations. Therefore, we can represent a state as a list
of bindings between memory locations and values. If the same memory location
is bound twice in the same state, the most recent binding, that is, the leftmost
one, is the valid one.

State: Set
[J: State
[~ -, ]:N — N — State — State

The state [v — n, s] is the state s with the content of the location v replaced by
n.



Operational semantics consists in three relations giving meaning to arith-
metic expressions, boolean expressions, and commands. Each relation has three
arguments: The expression or command, the state in which the expression is
evaluated or the command executed, and the result of the evaluation or execu-

tion.
((-,-)a ~ -): AExp — State — N — Prop

({-,")g ~ -): BExp — State — B — Prop
({(-,")c ~ -): Command — State — State — Prop
For arithmetic expressions we have that constants are interpreted in them-
selves, that is, we have axioms of the form

(Num(n),o)a ~n

for every n:N and o:State. Memory locations are interpreted by looking up
their values in the state. Consistently with the spirit of operational semantics,
we define the lookup operation by derivation rules rather than by a function.

(value_ind o v n)
(Loc(v),0)a ~ n

where

value_ind: State — N — N — Prop
no_such_location: (v: N)(value_ind [] v 0)
first_location: (v, n: N; o: State)(value_ind [v +— n, o] v n)
rest_locations: (v,v’,n,n': N; o: State)
v # v — (value_ind o v n) — (value_ind [v' — n/, 0] v n)

Notice that we assign the value 0 to empty locations, rather that leaving them
undefined. This corresponds to giving a default value to uninitialized variables
rather than raising an exception.

The operations are interpreted in the obvious way, for example,

<GO7U>A ~ o <a1,J>A ~r Ny
(ap + a1,0)a ~ ng +m1

where the symbol + is overloaded: ag + a; denotes the arithmetic expression
obtained by applying the symbol + to the expressions ag and aq, ng+ny denotes
the sum of the natural numbers ng and n;.

In short, the operational semantics of arithmetic expressions is defined by
the inductive relation

({-,)a ~ -): AExp — State = N — Prop
eval_Num: (n:N; o: State)((Num(n), o)a ~> n)
eval_Loc: (v, n: N; o: State)(value_ind o v n) — ({Loc(v), o)A ~> n)
eval_Plus: (ag, a1: AExp; ng, n;: N; o: State)
({ao, o)A ~ no) — ((a1,0)a ~ no) —
({ap + a1,0)A ~ ng + ny)
eval_Minus: - - -
eval_Mult: - - -



For the subtraction case the cutoff difference is used, that is, n—m = 0 if n < m.
The definition of the operational semantics of boolean expressions is similar
and we omit it.
The operational semantics of commands specifies how a command maps
states to states. skip is the command that does nothing, therefore it leaves the
state unchanged.

<Skip7 U>C ~ o

The assignment X <« a evaluates the expression a and then updates the
contents of the location X to the value of a.

<CL, U>A ~n O[X+sn] ™ o’

(X —a,0)c ~ 0o

where o[x,.,] ~» 0 asserts that ¢’ is the state obtained by changing the contents
of the location X to n in o. It could be realized by simply ¢’ = [X + n, o]. This
solution is not efficient, since it duplicates assignments of existing locations and
it would produce huge states during computation. A better solution is to look
for the value of X in ¢ and change it.

(‘[ ~» -): State — N — N — State — Prop
update_no_location: (v, n: N)([](,.,; ~ [])
update first: (v, n1, n2: N; 0 State) ([v = ny, 0], ) ~ [V 12, 0])
update_rest: (v1,v2,m1,n2:N;01,09: N)vg # vy —
(O1[ugroms] ~ 02) = ([v1 = N1, 01y iy ~ [V1 1 01, 02])

Notice that we require a location to be already defined in the state to update it. If
we try to update a location not present in the state, we leave the state unchanged.
This corresponds to requiring that all variables are explicitly initialized before
the execution of the program. If we use an uninitialized variable in the program,
we do not get an error message, but an anomalous behaviour: The value of the
variable is always zero.

Evaluating a sequential composition c1;ce on a state o consists in evaluating
c1 on o, obtaining a new state o1, and then evaluating co on oy to obtain the
final state os.

(c1,0)c o1 (e2,01)c ~ 02
<61;C270>C ~> 02

Evaluating conditionals uses two rules. In both rules, we evaluate the boolean
expression b, but they differ on the value returned by this step and the sub-
instruction that is executed.

(b,o)g ~true (c1,0)c~ 01 (bo)g ~ false (c3,0)c ~ 02

(if b then ¢ else ca,0)c ~ 01 (if b then ¢ else ca,0)c ~ 02

As for conditionals, we have two rules for while loops. If b evaluates to true,
¢ is evaluated on o to produce a new state ¢’, on which the loop is evaluated
recursively. If b evaluates to false, we exit the loop leaving the state unchanged.

(b,o)g ~ true  {(c,0)c ~ o’ (while b do ¢,0")c ~ o” (b, o) ~ false

(while b do ¢, )¢ ~ o (while b do ¢,0)c ~ &



The above rules can be formalized in Coq in a straightforward way by an
inductive relation.

{-,")¢ ~ -: Command — State — State — Prop
eval_skip: (o: State)((skip, o)c ~ o)
eval_assign: (o, o’: State; v, n: N; a: AExp)
(0,00 ~ 1) = (Gfpn] ~ o) — ({0 @, 0)c ~ )
eval_scolon: (0,01, 05: State; ¢1, c3: Command)
({cr,0)c ~ 01) = ((c2,01)c ~ 02) = ({152, 0)c ~ 02)
eval_if true: (b: BExp; o, 01: State; ¢1, co: Command)
(b, ) - true) — ((e1,)c — 1) —
((if b then ¢ else ca,0)c ~> 01)
eval_if false: (b: BExp; o, 09: State; ¢1, co: Command)
((b,0)B ~ false) — ({(c2,0)c ~ 02) —
((if b then ¢ else ¢, 0)c ~ 02)
eval_while_true: (b: BExp; c: Command; o, 0’,0”: State)
(b, ) ~ true) — (e, 0)c ~ o) —
({while b do ¢,0’)¢c ~ 0”) — ({while b do ¢, )¢ ~ ")
eval_while_false: (b: BExp; c: Command; o: State)
((b, o) ~ false) — ({while b do ¢,0)c ~ o)

For the rest of the paper we leave out the subscripts A, B, and Cin (-, -) ~ -.

3 Functional interpretation

Denotational semantics consists in interpreting program evaluation as a func-
tion rather than as a relation. We start by giving a functional interpretation to
expression evaluation and state update. This is quite straightforward, since we
can use structural recursion on expressions and states. For example, the inter-
pretation function on arithmetic expressions is defined as

[-]: AExp — State — N
[Num(n)]s :=n

[Loc(v)]s := value_rec(o, v)
[ao + a1]e == [ao]s + [a1]s
[ao — a1]o := [ao]o — [ai]
HQO * al]]a = [[aO]]a : ﬂal]]a

a

where value_rec(+, ) is the function giving the contents of a location in a state,
defined by recursion on the structure of the state. It differs from value_ind because
it is a function, not a relation; value_ind is its graph. We can now prove that
this interpretation function agrees with the operational semantics given by the
inductive relation (-,-) ~» - (all the lemmas and theorems given below have been
checked in a computer-assisted proof).

Lemma 1. Vo: State.Va: AExp.¥n:N.(0,a) ~ n < [a], = n.



In the same way, we define the interpretation of boolean expressions
[-]: BExp — State — B
and prove that it agrees with the operational semantics.

Lemma 2. Vo: State.Vb: BExp.Vt:B.(0,b) ~ t & [a], = t.

We overload the Scott brackets [-] to denote the interpretation function both on
arithmetic and boolean expressions (and later on commands).
Similarly, we define the update function

:[-/]: State = N — N — State
and prove that it agrees with the update relation
Lemma 3. Vo,0": State.Vv, n: N.opy, ) ~ 0’ & o[n/v] = o’

The next step is to define the interpretation function [-] on commands. Un-
fortunately, this cannot be done by structural recursion, as for the cases of
arithmetic and boolean expressions. Indeed we should have

if b then ¢; else o]y := [[61%” if [b] = true

[eo]o if [b], = false

. [ [while b do ]y, if [b]s = true
[while b do ], := {a . if [b], = false
but in the clause for while loops the interpretation function is called on the same
argument if the boolean expression evaluates to true. Therefore, the argument
of the recursive call is not structurally smaller than the original argument.

So, it is not possible to associate a structural recursive function to the in-
struction execution relation as we did for the lookup, update, and expression
evaluation relations. The execution of while loops does not respect the pattern
of structural recursion and termination cannot be ensured: for good reasons too,
since the language is Turing complete. However, we describe now a way to work
around this problem.

3.1 The iteration technique

A function representation of the computation can be provided in a way that
respects typing and termination if we don’t try to describe the execution function
itself but the second order function of which the execution function is the least



fized point. This function can be defined in type theory by cases on the structure
of the command.

F: (Command — State — State) — Command — State — State
(F fskipo) =0

(F f (X —a) o) :=ol[a]s/X]
(F f(c1562) 0) :=(f c2 (f e1 0)) .
(F f (if b then ¢ else ¢3) o) := E; 2 Z; ﬁ HZ z ;;lljsee

(F f (while b do ¢) o) — {((Tf (while b do ¢) (f ¢ o)) i HZ z;:l*;

Intuitively, writing the function F is exactly the same as writing the recursive
execution function, except that the function being defined is simply replaced by
a bound variable (here f). In other words, we replace recursive calls with calls
to the function given in the bound variable f.

The function F describes the computations that are performed at each iter-
ation of the execution function and the execution function performs the same
computation as the function F when the latter is repeated as many times as
needed. We can express this with the following theorem.

Theorem 1 (eval_com_ind_to_rec).

Ve: Command.Voq, oy: State.
{c,01) ~» 09 = Fk:N.Vg: Command — State — State.(F¥ g c 01) = 03

where we used the following notation
F* = (iter (Command — State — State) F k) = A\g. (F (F --- (F g) ---))
~———
k times

definable by recursion on k,

iter: (A:Set)(A - A) - N—- A — A
(iter A f0a):=
(iter A f (S k) ) = (f (iter A f k a)).

Proof. Easily proved using the theorems described in the previous section and
an induction on the derivation of {c¢,01) ~» o2: This kind of induction is also
called rule induction in [15]. 0

3.2 Extracting an interpreter

The Coq system provides an extraction facility [10], which makes it possible to
produce a version of any function defined in type theory that is written in a
functional programming language’s syntax, usually the OCaml implementation
of ML. In general, the extraction facility performs some complicated program
manipulations, to ensure that arguments of functions that have only a logical



content are not present anymore in the extracted code. For instance, a division
function is a 3-argument function inside type theory: The first argument is the
number to be divided, the second is the divisor, and the third is a proof that the
second is non-zero. In the extracted code, the function takes only two arguments:
The extra argument does not interfere with the computation and its presence
cannot help ensuring typing, since the programming language’s type system is
too weak to express this kind of details.

The second order function F and the other recursive functions can also be
extracted to ML programs using this facility. However, the extraction process is
a simple translation process in this case, because none of the various function
actually takes proof arguments.

To perform complete execution of programs, using the ML translation of
F, we have the possibility to compute using the extracted version of the iter
function. However, we need to guess the right value for the k& argument. One
way to cope with this is to create an artificial “infinite” natural number, that
will always appear to be big enough, using the following recursive data definition:

letrec w = (S w).

This definition does not correspond to any natural number that can be manip-
ulated inside type theory: It is an infinite tree composed only of S constructors.
In memory, it corresponds to an S construct whose only field points to the whole
construct: It is a loop.

Using the extracted iter with w is not very productive. Since ML evaluates
expressions with a call-by-value strategy, evaluating

(iter Fgw co)
imposes that one evaluates
(F (iter F g w) c o)
which in turn imposes that one evaluates
(F (F (iter F g w)) c o)

and so on. Recursion unravels unchecked and this inevitably ends with a stack
overflow error. However, it is possible to use a variant of the iteration function
that avoids this infinite looping, even for a call-by-value evaluation strategy. The
trick is to n-expand the expression that provokes the infinite loop, to force the
evaluator to stop until an extra value is provided, before continuing to evaluate
the iterator. The expression to define this variant is as follows:

iter': (A, B:Set)((A—-B) - A—B)—-N—(A—-B)—->A—B

(te ABGO f):=f
(iter ABG (Sk)f):=(G X a:A.(iter’ ABGEK [ a))

Obviously, the expression \a: A.(iter’ A B G k f a) is n-equivalent to the expres-
sion (iter’ A B G k f). However, for call-by-value evaluation the two expression



are not equivalent, since the A-expression in the former stops the evaluation
process that would lead to unchecked recursion in the latter.

With the combination of iter’ and w we can now execute any terminating
program without needing to compute in advance the number of iterations of
F that will be needed. In fact, w simply acts as a natural number that is big
enough. We obtain a functional interpreter for the language we are studying,
that is (almost) proved correct with respect to the inductive definition (-,-) ~> -.

Still, the use of w as a natural number looks rather like a dirty trick: This piece
of data cannot be represented in type theory, and we are taking advantage of
important differences between type theory and ML’s memory and computation
models: How can we be sure that what we proved in type theory is valid for
what we execute in ML?7 A first important difference is that, while executions
of iter or iter’ are sure to terminate in type theory, (iter’ F w g) will loop if the
program passed as argument is a looping program.

The purpose of using w and iter’ is to make sure that F will be called as
many times as needed when executing an arbitrary program, with the risk of
non-termination when the studied program does not terminate. This can be
done more easily by using a fizpoint function that simply returns the fixpoint of
F. This fixpoint function is defined in ML by

letrec (fix f) = f(Ax.fix [ ).

Obviously, we have again used the trick of n-expansion to avoid looping in the
presence of a call-by-value strategy. With this fix function, the interpreter func-
tion is

interp: Command — State — State

interp := fix F.

To obtain a usable interpreter, it is then only required to provide a parser
and printing functions to display the results of evaluation. This shows how we
can build an interpreter for IMP in ML. But we realized it by using some tricks
of functional programming that are not available in type theory. If we want to
define an interpreter for IMP in type theory, we have to find a better solution
to the problem of partiality.

3.3 Characterizing terminating programs

Theorem 1 gives one direction of the correspondence between operational seman-
tics and functional interpretation through the iteration method. To complete the
task of formalizing denotational semantics, we need to define a function in type
theory that interprets each command. As we already remarked, this function
cannot be total, therefore we must first restrict its domain to the terminating
commands. This is done by defining a predicate D over commands and states,
and then defining the interpretation function [-] on the domain restricted by this
predicate. Theorem 1 suggests the following definition:

D:Command — State — Prop
(D ¢ o) := Jk:N.Vgy, go: Command — State — State.
(FF g1 co) = (FF g5 c o).



Unfortunately, this definition is too weak. In general, such an approach can-
not be used to characterize terminating “nested” iteration. This is hard to see
in the case of the IMP language, but it would appear plainly if one added an
exception instruction with the following semantics:

(exception, o) ~ [].

Intuitively, the programmer could use this instruction to express that an excep-
tional situation has been detected, but all information about the execution state
would be destroyed when this instruction is executed.

With this new instruction, there are some commands and states for which
the predicate D is satisfied, but whose computation does not terminate.

¢ := while true do skip; exception.

It is easy to see that for any state o the computation of ¢ on ¢ does not terminate.
In terms of operational semantics, for no state ¢’ is the judgment (c,o) ~ o’
derivable.

However, (D c o) is provable, because (F¥ g ¢ ¢) =[] for any k > 1.

In the next section we work out a stronger characterization of the domain
of commands, that turn out to be the correct one in which to interpret the
operational semantics.

4 The Accessibility predicate

A common way to represent partial functions in type theory is to restrict their do-
main to those arguments on which they terminate. A partial function f: A —~ B
is then represented by first defining a predicate D;: A — Prop that character-
izes the domain of f, that is, the elements of A on which f is defined; and then
formalizing the function itself as f: (Y'z: A.(Dy x)) — B, where Y'z: A.(D; x) is
the type of pairs (x, h) with z: A and h: (D ).

The predicate Dy cannot be defined simply by saying that it is the domain of
definition of f, since, in type theory, we need to define it before we can define f.
Therefore, D¢ must be given before and independently from f. One way to do it
is to characterize D; as the predicate satisfied by those elements of A for which
the iteration technique converges to the same value for every initial function.
This is a good definition when we try to model lazy functional programming
languages, but, when interpreting strict programming languages or imperative
languages, we find that this predicate would be too weak, being satisfied by
elements for which the associated program diverges, as we have seen at the end
of the previous section.

Sometimes the domain of definition of a function can be characterized inde-
pendently of the function by an inductive predicate called accessibility [11,7,5,
3]. This simply states that an element of a can be proved to be in the domain if
the application of f on a calls f recursively on elements that have already been



proved to be in the domain. For example, if in the recursive definition of f there
is a clause of the form

fle)i=---fler) - flea) -

and a matches e, that is, there is a substitution of variables p such that a = p(e);
then we add a clause to the inductive definition of Acc of type

Acc(e1) — Acc(ez) — Acc(e).

This means that to prove that a is in the domain of f, we must first prove that
p(e1) and p(eq) are in the domain.

This definition does not always work. In the case of nested recursive calls
of the function, we cannot eliminate the reference to f in the clauses of the
inductive definition Acc. If, for example, the recursive definition of f contains a
clause of the form

fle) = ()

then the corresponding clause in the definition of Acc should be
Acc(e’) — Acc(f(e")) — Acc(e)

because we must require that all arguments of the recursive calls of f satisfy Acc
to deduce that also e does. But this definition is incorrect because we haven’t
defined the function f yet and so we cannot use it in the definition of Acc.
Besides, we need Acc to define f, therefore we are locked in a vicious circle.

In our case, we have two instances of nested recursive clauses, for the se-
quential composition and while loops. When trying to give a semantics of the
commands, we come to the definition

les; e2lo = [eale,
for sequential composition and
[while b do ], := [while b do ][,

for a while loop, if the interpretation of b in state o is true.
Both cases contain a nested occurrence of the interpretation function [—].
An alternative solution, presented in [4], exploits the extension of type theory
with simultaneous induction-recursion [6]. In this extension, an inductive type
or inductive family can be defined simultaneously with a function on it. For the
example above we would have

Acc: A — Prop
fi(x:A)(Accz) — B
éccn: (h': (Acc €'))(Acc (f € h')) — (Acc e)

(fe(acc, W h)):=---(f (fe& h)h)---



This method leads to the following definition of the accessibility predicate
and interpretation function for the imperative programming language IMP:

comAcc: Command — State — Prop
[]: (¢: Command; o: State)(comAcc ¢ o) — State

accSkip: (o: State)(comAcc skip o)
accAssign: (v: N; a: AExp; o: State)(comAcc (v < a) o)
accScolon: (cy, co: Command; o: State; hy: (comAcc ¢; o))(comAcc ca [c1]™)
— (comAcc (¢1;¢2) o)
acclf true: (b: BExp; c1, co: Command; o: State)[b], = true — (comAcc ¢; o)
— (comAcc (if b then ¢; else ¢3) o)
acclf false: (b: BExp; c1, co: Command; o: State)[b], = false — (comAcc ¢z o)
— (comAcc (if b then ¢; else ¢q) o)
accWhile_true: (b: BExp; ¢: Command; o: State) [b] = true
— (h: (comAcc ¢ o))(comAcc (while b do ¢) [c]?)
— (comAcc(while b do ¢) o)
accWhile_false: (b: BExp; c: Command; o: State) [b] = false
— (comAcc (while b do ¢) o)

[[Skip]]((yaCCSkip o) — 0

[[(’U — a)]]((raccAssign vao) — J[G,/'U]
H(Cl;CQ) SraccScoIon c1 ca o hy hz) — |I62]]h2

h
[ealat

. ftrue b ey co o p b
[if b then c; else cp] Fecf-true ber ez o p ) 10 Ih

[[If b then ¢ else CQ]]gacclf,false beci ca oq hg) — [[02]](};2
[while b do c]e<e-twe ©€.2 2 11— [while b do ]2},

[[Whlle b do C]]((Tachhile,false bcoq) —

This definition is admissible in systems that implement Dybjer’s schema for
simultaneous induction-recursion. But on systems that do not provide such
schema, for example Coq, this definition is not valid.

We must disentangle the definition of the accessibility predicate from the
definition of the evaluation function. As we have seen before, the evaluation
function can be seen as the limit of the iteration of the functional F' on an
arbitrary base function f: Command — State — State. Whenever the evaluation
of a command c is defined on a state o, we have that [¢], is equal to (F}“ co) fora
sufficiently large number of iterations k. Therefore, we consider the functions FJ’f
as approximations to the interpretation function being defined. We can formulate
the accessibility predicate by using such approximations in place of the explicit
occurrences of the evaluation function. Since the iteration approximation has two
extra parameters, the number of iterations k& and the base function f, we must
also add them as new arguments of comAcc. The resulting inductive definition



is

comAcc: Command — State — N — (Command — State — State) — Prop
accSkip: (o: State; k: N; f: Command — State — State)(comAcc skip 0 k+ 1 f)
accAssign: (v:N;a: AExp; o: State; k: N; f: Command — State — State)
(comAcc (v«—a) o k+1 f)
accScolon: (e, ca: Command; o: State; k: N; f: (Command — State — State))
(comAcc ¢1 0 k f) — (comAcc ¢p (Ff ¢1 0) k f)
— (comAcc (c15¢2) o k+1 f)
acclf _true: (b: BExp; ¢1, co: Command; o: State;
k:N; f: Command — State — State)((b, o) ~~ true)
— (comAcc ¢; 0 k f) — (comAcc (if b then ¢y else ¢co) 0 k+1 f)
acclf false: (b: BExp; 1, co: Command; o: State;
k:N; f: Command — State — State)((b, o) ~~ false)
— (comAcc ¢3 0 k f) — (comAcc (if b then ¢y else c2) o k+ 1 f)
accWhile_true: (b: BExp; c: Command; o: State;
k:N; f: Command — State — State)((b, o) ~~ true)
— (comAcc ¢ o k f) — (comAcc (while b do ¢) (Ff ¢ o))
— (comAcc(while bdoc) o k+1 f)
accWhile_false: (b: BExp; ¢: Command; o: State;
k:N; f: Command — State — State)((b, o) ~~ false)
— (comAcc (while bdoc) o k+1 f).

This accessibility predicate characterizes the points in the domain of the program
parametrically on the arguments k and f. To obtain an independent definition of
the domain of the evaluation function we need to quantify on them. We quantify
existentially on k, because if a command ¢ and a state o are accessible in k
steps, then they will still be accessible in a higher number of steps. We quantify
universally on f because we do not want the result of the computation to depend
on the choice of the base function.

comDom: Command — State — Set
(comDom ¢ ¢) = Yk:N.Vf: Command — State — State.(comAcc ¢ ¢ k f)

The reason why the sort of the predicate comDom is Set and not Prop is that
we need to extract the natural number k from the proof to be able to compute
the following evaluation function:

[l: (c: Command;o: State; f: Command — State — State)
(comDom ¢ ¢) — State

k,h ;
[ = (FF ¢ o)

To illustrate the meaning of these definitions, let us see how the interpre-
tation of a sequential composition of two commands is defined. The interpre-
tation of the command (c;;c2) on the state o is [e1;co]Z, where H is a proof

of (comDom (ci;¢2) o). Therefore H must be in the form (k,h), where k:N
and h:Vf:Command — State — State.(comAcc (¢1;¢2) o k f). To see how



h can be constructed, let us assume that f: Command — State — State and
prove (comAcc (¢1;¢2) o k f). This can be done only by using the constructor
accScolon. We see that it must be k = k' +1 for some k¥’ and we must have proofs
hi:(comAcc ¢y o k' f) and hs: (comAcc ¢y (FJ’?/ ¢y o) k' f). Notice that in hs
we don’t need to refer to the evaluation function [] anymore, and therefore the
definitions of comAcc does not depend on the evaluation function anymore. We
have now that (h f) := (accScolon ¢; co o k' f hy hg). The definition of [c1; ca]
is also not recursive anymore, but consists just in iterating F' k times, where k
is obtained from the proof H.

We can now prove an exact correspondence between operational semantics
and denotational semantics given by the interpretation operator [-].

Theorem 2.

Vc: Command.Vo, o’: State.
(¢,0) ~ o' & FH: (comDom ¢ o).V f: Command — State — State.[c]Z, = o’.

Proof. From left to right, it is proved by rule induction on the derivation of
(¢,0) ~» o’. The number of iterations k is the depth of the proof and the proof
of the comAcc predicate is a translation step by step of it. From right to left, it
is proved by induction on the proof of comAcc.

5 Conclusions

The combination of the iteration technique and the accessibility predicate has,
in our opinion, a vast potential that goes beyond its application to denotational
semantics. Not only does it provide a path to the implementation and reasoning
about partial and nested recursive functions that does not require simultaneous
induction-recursion; but it gives a finer analysis of convergence of recursive op-
erators. As we pointed out in Section 3, it supplies not just any fixed point of
an operator, but the least fixed point.

We were not the first to formalize parts of Winskel’s book in a proof system.
Nipkow [9] formalized the first 100 pages of it in ISABELLE/HOL. The main dif-
ference between our work and his, is that he does not represent the denotation
as a function but as a subset of State x State that happens to be the graph of a
function. Working on a well developed library on sets, he has no problem in using
a least-fixpoint operator to define the subset associated to a while loop: But this
approach stays further removed from functional programming than an approach
based directly on the functions provided by the prover. In this respect, our work
is the first to reconcile a theorem proving framework with total functions with
denotational semantics. One of the gains is directly executable code (through
extraction or t-reduction). The specifications provided by Nipkow are only ex-
ecutable in the sense that they all belong to the subset of inductive properties
that can be translated to PROLOG programs. In fact, the reverse process has
been used and those specifications had all been obtained by a translation from a
variant of PROLOG to a theorem prover [2]. However, the prover’s function had
not been used to represent the semantics.



Our method tries to maximize the potential for automation: Given a recursive
definition, the functional operator F, the iterator, the accessibility predicate,
the domain, and the evaluation function can all be generated automatically.
Moreover, it is possible to automate the proof of the accessibility predicate, since
there is only one possible proof step for any given argument; and the obtained
evaluation function is computable inside type theory.

We expect this method to be widely used in the future in several areas of
formalization of mathematics in type theory.
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