AMEEDA: A General-Purpose Mapping Tool
for Parallel Applications on Dedicated Clusters*

X. Yuan!, C. Roig?, A. Ripoll', M.A. Senar!, F. Guirado?, and E. Luque!

! Universitat Autdonoma de Barcelona, Dept. of CS
xiaoyuan@aows10.uab.es, a.ripoll@cc.uab.es,
miquelangel.senarQuab.es, e.luque@cc.uab.es

2 Universitat de Lleida, Dept. of CS
roig@eup.udl.es, fernando@eup.udl.es

Abstract. The mapping of parallel applications constitutes a difficult
problem for which very few practical tools are available. AMEEDA has
been developed in order to overcome the lack of a general-purpose map-
ping tool. The automatic services provided in AMEEDA include instru-
mentation facilities, parameter extraction modules and mapping strate-
gies. With all these services, and a novel graph formalism called TTIG,
users can apply different mapping strategies to the corresponding appli-
cation through an easy-to-use GUI, and run the application on a PVM
cluster using the desired mapping.

1 Introduction

Several applications from scientific computing, e.g. from numerical analysis, ima-
ge processing and multidisciplinary codes, contain different kinds of potential
parallelism: task parallelism and data parallelism [I]. Both data and task paral-
lelism can be expressed using parallel libraries such as PVM and MPI. However,
these libraries are not particularly efficient in exploiting the potential paral-
lelism of applications. In both cases, the user is required to choose the number
of processors before computation begins, and the processor mapping mecha-
nism is based on very simple heuristics that take decisions independently of the
relationship exhibited by tasks. However, smart allocations should take these
relationships into account in order to guarantee that good value for the running
time is achieved.

In general, static mapping strategies make use of synthetic models to repre-
sent the application. Two distinct kinds of graph models have been extensively
used in the literature [2]. The first is the TPG (Task Precedence Graph), which
models parallel programs as a directed acyclic graph with nodes representing
tasks and arcs representing dependencies and communication requirements. The
second is the TIG (Task Interaction Graph) model, in which the parallel appli-
cation is modeled as an undirected graph, where vertices represent the tasks and

* This work was supported by the MCyT under contract 2001-2592 and partially
sponsored by the Generalitat de Catalunya (G. de Rec. Consolidat 2001SGR-00218).

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 248-[252]
© Springer-Verlag Berlin Heidelberg 2002



AMEEDA: A General-Purpose Mapping Tool for Parallel Applications 249

edges denote intertask interactions. Additionally, the authors have proposed a
new model, TTIG (Temporal Task Interaction Graph) [3], which represents a
parallel application as a directed graph, where nodes are tasks and arcs denote
the interactions between tasks. The TTIG arcs include a new parameter, called
degree of parallelism, which indicates the maximum ability of concurrency of
communicating tasks. This means that the TTIG is a generalized model that
includes both the TPG and the TI G.

In this work, we present a new tool called AMEEDA (Automatic Mapping
for Efficient Execution of Distributed Applications). AMEEDA is an automatic
general-purpose mapping tool that provides a unified environment for the ef-
ficient execution of parallel applications on dedicated cluster environments. In
contrast to the tools existing in the literature [4] [5], AMEEDA is not tied to a
particular synthetical graph model.

2 Overview of AMEEDA

The AMEEDA tool provides a user-friendly environment that performs the auto-
matic mapping of tasks to processors in a PVM platform. First, the user supplies
AMEEDA with a C+PVM program whose behavior is synthesized by means of
a tracing mechanism. This synthesized behavior is used to derive the task graph
model corresponding to the program, which will be used later to automatically
allocate tasks to processors, in order to subsequently run the application. Figure
[[] shows AMEEDA’s overall organization and its main modules, together with
the utility services that it is connected with, whose functionalities are described
below.

2.1 Program Instrumentation

Starting with a C+PVM application, the source code is instrumented using the
TapePVM tool (ftp://ftp.imag.fr/pub/APACHE/TAPE). We have adopted this
technique, in which instructions or functions that correspond to instrumentation
probes are inserted in users’ code before compilation, because of its simplicity.
Using a representative data set, the instrumented application is executed in the
PVM platform, where a program execution trace is obtained with TapePVM
and is recorded onto a trace file.

2.2 Synthesized Behaviour

For each task, the trace file is processed to obtain the computation phases where
the task performs sequential computation of sets of instructions, and the commu-
nication and synchronization events with their adjacent tasks. This information
is captured in a synthetic graph called the Temporal Flow Graph (TFG).



250 X. Yuan et al.

User Interface AMEEDATool
AMEEDA Synthesized
Task Graph Core behaviour
Task Graph Model

TTIG
extraction

Architecture

Mapping

Execution
Tracking

) TFG
Mapping Method extraction

Mapping R
\
v
—

Performance
Metrics

Trace File

User Progam

A
Program Tasks M < Intrumented TapePVM CRvM
apper C+PVM

Execution Platform Program Instrumentation

Fig. 1. Block diagram of AMEEDA.

2.3 AMEEDA Tool

With the synthesized behavior captured in the TFG graph, the AMEEDA tool
executes the application using a specific task allocation. The necessary steps to
physically execute the application tasks using the derived allocation are carried
out by the following AMEEDA modules.

1. Task Graph Model

Starting from the TFG graph, the TTIG model corresponding to the application
is calculated. Note that, although different traces may be collected if an appli-
cation is executed with different sets of data, only one TTIG is finally obtained,
which captures the application’s most representative behavior.

The Processors-bound sub-module estimates the minimum number of proces-
sors to be used in the execution that allows the potential parallelism of appli-
cation tasks to be exploited. This is calculated using the methodology proposed
in [6] for TPGs, adapted to the temporal information summarized in the TFG
graph.

2. Mapping Method

Currently, there are three kinds of mapping policies integrated within AMEEDA
that can be applied to the information captured in the TTIG graph of an appli-
cation.



AMEEDA: A General-Purpose Mapping Tool for Parallel Applications 251

— (a) TTIG mapping. This option contains the MATE (Mapping Algorithm
based on Task Dependencies) algorithm, based on the TTIG model [3]. The
assignment of tasks to processors is carried out with the main goal of joining
the most dependent tasks to the same processor, while the least-dependent
tasks are assigned to different processors in order to exploit their ability for
concurrency.

— (b) TIG mapping. In this case, allocation is carried out through using the
CREMA heuristic [[7]. This heuristic is based on a two-stage approach that
first merges the tasks into as many clusters as number of processors, and then
assigns clusters to processors. The merging stage is carried out with the goal
of achieving load balancing and minimization of communication cost.

— (¢) TPG mapping. Allocation is based on the TPG model. In particular,
we have integrated the ETF heuristic (Earliest Task First) [8], which as-
signs tasks to processors with the goal of minimizing the starting time for
each task, and has obtained good results at the expense of relatively high
computational complexity.

3. User Interface

This module provides several options through a window interface that facilitates
the use of the tool. The Task Graph sub-module allows the information from the
TTIG graph to be visualized. The Architecture sub-module shows the current
configuration of the PVM virtual machine. The execution of the application, with
a specific allocation chosen in the Mapping option, can be visualized by using the
Ezecution tracking submodule that graphically shows the execution state for the
application. The Mapping can also be used to plug-in other mapping methods.
Finally, the Performance option gives the final execution time and speedup of
a specific run. It can also show historical data recorded in previous executions
in a graphical way, so that performance analysis studies are simplified. Figure
corresponds to the AMEEDA window, showing the TTIG graph for a real
application in image processing, together with the speedup graphic generated
with the Performance sub-module, obtained when this application was executed
using the PVM default allocation and the three different mapping strategies
under evaluation.

3 Conclusions

We have described the AMEEDA tool, a general-purpose mapping tool that
has been implemented with the goal of generating efficient allocations of para-
llel programs on dedicated clusters. AMEEDA provides a unified environment
for computing the mapping of long-running applications with relatively stable
computational behavior. The tool is based on a set of automatic services that
instrumentalize the application and generate the suitable synthetic information.
Subsequently, the application will be executed following the allocation computed
by AMEEDA, without any user code re-writing. Its graphical user interface
constitutes a flexible environment for analyzing various mapping algorithms and



252 X. Yuan et al.

- AMEEDA; homefjonny futah3.0_uabJutah30.4g

Exit Load TTIG | New TTIG

Leval 0,

-~ Graphic
Level 1
Speed-up
4

- TTTIG
- PYM
TG
® TPG

Level §:
i B R

o1

L]
Mumber of processors

X Close

Fig. 2. AMEEDA windows showing the TTIG graph and the speedup for a real appli-
cation.

performance parameters. In its current state of implementation, the graphical
tool includes a small set of representative mapping policies. Further strategies
are easy to include, which is also a highly desirable characteristic in its use as
a teaching and learning aid for understanding mapping algorithms. As future
work, AMEEDA will be enhanced in such a way that the most convenient map-
ping strategy is automatically chosen, according to the characteristics of the
application graph, without user intervention.

References

1. Subhlok J. and Vongran G.: Optimal Use of Mixed Task and Data Parallelism for
Pipelined Computations. J. Par. Distr. Computing. vol. 60. pp 297-319. 2000.

2. Norman M.G. and Thanisch P.: Models of Machines and Computation for Mapping
in Multicomputers. ACM Computing Surveys, 25(3). pp 263-302. 1993.

3. Roig C., Ripoll A., Senar M.A., Guirado F. and Luque E.: A New Model for Static
Mapping of Parallel Applications with Task and Data Parallelism. IEEE Proc. of
IPDPS-2002 Conf. ISBN: 0-7695-1573-8. Apr. 2002.

4. Ahmad I. and Kwok Y-K.: CASCH: A Tool for Computer-Aided Scheduling. IEEE
Concurrency. pp 21-33. oct-dec. 2000.

5. Decker T. and Diekmann R.: Mapping of Coarse-Grained Applications onto Work-
station Clusters. IEEE Proc. of PDP’97. pp 5-12. 1997.

6. Fernandez E.B. and Bussel B.: Bounds on the Number of Processors and Time for
Multiprocessor Optimal Schedule. IEEE Tr. on Computers. pp 299-305. Aug. 1973.

7. Senar M. A., Ripoll A., Cortés A. and Luque E.: Clustering and Reassignment-base
Mapping Strategy for Message-Passing Architectures. Int. Par. Proc Symp&Sym.
On Par. Dist. Proc. (IPPS/SPDP 98) 415-421. IEEE CS Press USA, 1998.

8. Hwang J-J., Chow Y-C., Anger F. and Lee C-Y.: Scheduling Precedence Graphs in
Systems with Interprocessor Communication Times. SIAM J. Comput. pp: 244-257,
1989.



	1 Introduction
	2 Overview of AMEEDA
	2.1 Program Instrumentation
	2.2 Synthesized Behaviour
	2.3 AMEEDA Tool

	3 Conclusions
	References

