
A Parallel Solution in Texture Analysis
Employing a Massively Parallel Processor

Andreas I. Svolos, Charalambos Konstantopoulos, and Christos Kaklamanis

Computer Technology Institute and Computer Engineering & Informatics Dept.,
Univ. of Patras, GR 265 00 Patras, Greece,

svolos@cti.gr

Abstract. Texture is a fundamental feature for image analysis, classi-
fication, and segmentation. Therefore, the reduction of the time needed
for its description in a real application environment is an important ob-
jective. In this paper, a texture description algorithm running over a hy-
percube massively parallel processor, is presented and evaluated through
its application in real texture analysis. It is also shown that its hardware
requirements can be tolerated by modern VLSI technology.

Key words: texture analysis, co-occurrence matrix, hypercube, mas-
sively parallel processor

1 Introduction

Texture is an essential feature that can be employed in the analysis of images in
several ways, e.g. in the classification of medical images into normal and abnor-
mal tissue, in the segmentation of scenes into distinct objects and regions, and
in the estimation of the three-dimensional orientation of a surface. Two major
texture analysis methods exist: statistical and syntactic or structural. Statisti-
cal methods employ scalar measurements (features) computed from the image
data that characterize the analyzed texture. One of the most significant statis-
tical texture analysis methods is the Spatial Gray Level Dependence Method
(SGLDM). SGLDM is based on the assumption that texture information is con-
tained in the overall spatial relationship that the gray levels have to one another.
Actually, this method characterizes the texture in an image region by means of
features derived from the spatial distribution of pairs of gray levels (second-order
distribution) having certain inter-pixel distances (separations) and orientations
[1].

Many comparison studies have shown SGLDM to be one of the most signifi-
cant texture analysis methods [2]. The importance of this method has been shown
through its many applications, e.g. in medical image processing [3]. However, the
co-occurrence matrix [1], which is used for storing the textural information ex-
tracted from the analyzed image, is inefficient in terms of the time needed for its
computation. This disadvantage limits its applicability in real-time applications
and prevents the extraction of all the texture information that can be captured

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 431–435.
c© Springer-Verlag Berlin Heidelberg 2002

432 A.I. Svolos, C. Konstantopoulos, and C. Kaklamanis

by the SGLDM. The parallel computation of the co-occurrence matrix is a po-
tential solution to the computational time inefficiency of this data structure.
The first attempt to parallelize this computation was made in [4]. However, to
the best of our knowledge, the only previous research effort of parallelization
using a massively parallel processor was made in [5]. The reason is that until
recently, full parallelization was possible only on very expensive machines. The
cost of the parallel computation was prohibitive in most practical cases. For this
reason, even in [5], there was a compromise between hardware cost and computa-
tional speed. The parallel co-occurrence matrix computation ran over a Batcher
network topology. However, this parallel scheme had two significant drawbacks.
First, the Batcher network requires a very large number of processing elements
and interconnection links limiting its usefulness to the analysis of very small
image regions. Second, the parallel algorithm proposed in [5] assumes an off-line
pre-computation of the pairs of pixels that satisfy a given displacement vector
in each analyzed region. This pre-computation has to be performed by another
machine, since the Batcher network does not have this capability.

The rapid evolution of CMOS VLSI technology allows a large number of
processing elements to be put on a single chip surface [6], dramatically reducing
the hardware cost of the parallel implementation. Employing a regular parallel
architecture also helps towards achieving a larger scale of integration. In this
paper, a parallel algorithm for the computation of the co-occurrence matrix
running on a hypercube massively parallel processor, is presented and evaluated
through its application to the analysis of real textures.

2 The Parallel Algorithm
for the Co-occurrence Matrix Computation

The processing elements of the massively parallel processor employed in this
paper are interconnected via a hypercube network. The hypercube is a general-
purpose network proven to be efficient in a large number of applications, espe-
cially in image processing (2D-FFT, Binary Morphology) [7]. It has the ability
to efficiently compute the gray level pairs in an analyzed image region for any
displacement vector. Moreover, its large regularity makes feasible the VLSI im-
plementation of this parallel architecture.

In this paper, a modified odd-even-merge sort algorithm is employed for the
parallel computation of the co-occurrence matrix. In the proposed algorithm,
each element is associated with a counter and a mark bit. The counter gives
the number of times an element has been compared with an equal element up
to the current point of execution. The mark bit shows whether this element is
active, i.e. it participates in the parallel computation (bit = 0), or is inactive
(bit = 1). Each time two equal elements are compared, the associated counter of
one of these two elements increases by the number stored in the counter of the
other element. Also, the mark bit of the other element becomes 1, that is, the
element becomes inactive. Inactive elements are considered to be larger than the
largest element in the list. In the case that the compared elements are not equal,

A Parallel Solution in Texture Analysis 433

for i := 1 to m do
for j := 1 to i − 1 do /* transposition sub-steps */

parbegin
P 1 = PmPm−1 . . . Pi+11Pi−1 . . . Pj+10Pj−1 . . . P1;
P 2 = PmPm−1 . . . Pi+11Pi−1 . . . Pj+11Pj−1 . . . P1;
P 1 ↔ P 2;

parend
od
for j := i to 1 do /* comparison sub-steps */

parbegin
P 1 = PmPm−1 . . . Pj+10Pj−1 . . . P1;
P 2 = PmPm−1 . . . Pj+11Pj−1 . . . P1;
P 2 → P 1; /* the content of element P 2 is transferred to element P 1 */
if P 1.M == 0 and P 2.M == 0 and P 1.(A1, B1) == P 2.(A2, B2) then

P 1.C := P 1.C + P 2.C;
P 2.M := 1;
P 1 → P 2; /* the updated content of P 2 is sent back to P 2 */

else if P 1.M == 1 or P 1.(A1, B1) > P 2.(A2, B2) then
P 1 → P 2; /* P 2 gets the content of P 1 */
P 1 := P 2; /* P 1 gets the content sent from P 2 */

else
nop;

endif
parend

od
od

Fig. 1. The pseudocode of the proposed parallel algorithm for the co-occurrence matrix
computation

the classical odd-even-merge sort algorithm is applied. At the end, the modified
algorithm gives for each active element its times of repetition in the initial list.
If each element in the list is a pair of gray levels in the analyzed region that
satisfies a given displacement vector, it is straightforward to see that the above
algorithm eventually computes the corresponding co-occurrence matrix.

The pseudocode of the algorithm is shown in Fig. 1. In this figure, the lan-
guage construct parbegin. . .parend encloses the instructions, which are ex-
ecuted by all processing elements, concurrently. The ” = ” operator declares
equivalence of notations. Actually, the right operand is the binary representa-
tion of processing element P in the hypercube. The ” ↔ “ operator performs a
transposition of the contents of its operands (processing elements) through the
hypercube network. The “→” operator transfers data from its left operand to its
right operand over the hypercube network. Finally, P.(A, B) is the pair of gray
levels stored in processing element P , P.C is the counter associated with gray
level pair (A, B) and P.M is the corresponding mark bit.

3 Results and Discussion

In order to show the time performance of the proposed parallel algorithm in
a practical case, a large number of samples from natural textures were ana-
lyzed employing the SGLDM (fur, water, weave, asphalt, and grass) [8]. The
co-occurrence matrices were computed using the proposed parallel algorithm
running on the hypercube, the algorithm running on the Batcher network and

434 A.I. Svolos, C. Konstantopoulos, and C. Kaklamanis

the fastest serial algorithm. Each image had a dynamic range of 8 bits (256
gray levels). From each image, data sets of 64 non-overlapping sub-images of
size 64 × 64, 256 non-overlapping sub-images of size 32 × 32, and 1024 non-
overlapping sub-images of size 16 × 16 were extracted. 8 displacement vectors
were employed in the texture analysis of all five categories of samples, namely
(1,0), (0,1), (1,1), (1,-1), (2,0), (0,2), (2,2), and (2,-2). In this experiment, both
parallel architectures (hypercube and Batcher network) were assumed to be con-
sisted of all processing elements required to fully take advantage of the paral-
lelism inherent in the co-occurrence matrix computation for a specific image size.
The compared architectures were simulated on the Parallaxis simulator [9]. The
total computational time from the analysis of all images in each of the 15 data
sets was estimated. Then, an averaging of the computational time over all data
sets corresponding to the same image size was performed. The estimated average
times were employed in the computation of the speedups. Fig. 2 a) shows the
speedup of the hypercube over the serial processor whereas Fig. 2 b) shows the
speedup of the hypercube over the Batcher network.

The hypercube attains a greater speedup in all compared cases (see Fig. 2).
From Fig. 2 a), it is clear that the speedup increases as the size of the analyzed
images increases. It becomes about 2183 for the analyzed sets of the 64× 64 im-
ages. The reason for this increase is that the proposed algorithm running on the
hypercube can fully utilize the inherent parallelism in co-occurrence matrix com-
putation. As we increased the number of processing elements in the performed
experiment to handle the larger image size the proposed parallel algorithm be-
came much faster than the serial one. This phenomenon also appears in Fig. 2
b), where the speedup rises from about 6, in the case of the 16 × 16 images, to
about 30, in the case of the 64×64 images. From this figure, it is obvious that in
all analyzed cases the hypercube network was superior to the Batcher network.
However, in this performance comparison the achieved speedup was mainly due
to the efficient way of deriving the gray level pairs for a given displacement
vector employing the proposed architecture.

Fig. 2. a) The speedup of the hypercube over the serial processor for various image
sizes. b) The speedup of the hypercube over the Batcher network for various image
sizes

A Parallel Solution in Texture Analysis 435

Even though the degree of the hypercube increases logarithmically with the
number of nodes, which is actually its biggest disadvantage, the rapid evolution
of the VLSI technology and the large regularity of this type of architecture made
possible the manufacturing of large hypercubes. With the current submicron
CMOS technology [6], hundreds of simple processing elements can be put on a
single chip allowing the implementation of a massively parallel system on a single
printed circuit board for the simultaneous processing of the pixels of a 64 × 64
gray level image with a dynamic range of 8 bits (256 gray levels). Moreover,
from the pseudocode in Fig. 1, it is clear that the structure of each processing
element in the proposed parallel architecture can be very simple.

4 Conclusions

The parallel algorithm for the SGLDM proposed in this paper was shown to
be superior in all compared cases, in terms of computational time. The analysis
of real textures showed that the algorithm has the ability to fully exploit the
parallelism inherent in this computation. Furthermore, the employed parallel
architecture needs much less hardware than the previously proposed massively
parallel processors, which can be tolerated by modern VLSI technology.

Acknowledgements

This work was supported in part by the European Union under IST FET Project
ALCOM-FT and Improving RTN Project ARACNE.

References

1. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classifica-
tion. IEEE Trans. Syst. Man. Cybern. SMC-3 (1973) 610–621

2. Ohanian, P., Dubes, R.: Performance evaluation for four classes of textural features.
Patt. Rec. 25 (1992) 819–833

3. Kovalev, V., Kruggel, F., et al.: Three-dimensional texture analysis of MRI brain
datasets. IEEE Trans. Med. Imag. MI-20 (2001) 424–433

4. Kushner, T., Wu, A., Rosenfeld, A.: Image processing on ZMOB. IEEE Trans. on
Computers C-31 (1982) 943–951

5. Khalaf, S., El-Gabali, M., Abdelguerfi, M.: A parallel architecture for co-occurrence
matrix computation. In Proc. 36th Midwest Symposium on Circuits and Systems
(1993) 945–948

6. Ikenaga, T., Ogura, T.: CAM2: A highly-parallel two-dimensional cellular automa-
ton architecture. IEEE Trans. on Computers C-47 (1998) 788–801

7. Svolos, A., Konstantopoulos, C., Kaklamanis, C.: Efficient binary morphological
algorithms on a massively parallel processor. In IEEE Proc. 14th Int. PDPS.
Cancun, Mexico (2000) 281–286

8. Brodatz, P.: Textures: a Photographic Album for Artists and Designers. Dover
Publ. (1966)

9. http://www.informatik.uni-stuttgart.de/ipvr/bv/p3

	1 Introduction
	2 The Parallel Algorithm for the Co-occurrence Matrix Computation
	3 Results and Discussion
	4 Conclusions
	Acknowledgements
	References

