Skip to main content

Performance Measures for Dynamic Environments

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN VII (PPSN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2439))

Included in the following conference series:

Abstract

This article investigates systematically the utility of performance measures in non-stationary environments. Three characteristics for describing the goals of a dynamic adaptation process are proposed: accuracy, stability, and recovery. This examination underpins the usage of the best fitness value as a basis for measuring the three characteristics in scenarios with moderate changes of the best fitness value. However, for dynamic problems without coordinate transformations all considered fitness based measures exhibit severe problems. In case of the recovery, a newly proposed window based performance measure is shown to be best as long as the accuracy level of the optimization is rather high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angeline, P. J. (1997). Tracking extrema in dynamic environments. In P. J. Angeline, R. G. Reynolds, J. R. McDonnell, & R. Eberhart (Eds.), Evolutionary Programming VI (pp. 335–345). Berlin: Springer. (Lecture Notes in Computer Science 1213)

    Chapter  Google Scholar 

  • Branke, J. (1999). Evolutionary algorithms for dynamic optimization problems: A survey (Tech. Rep. No. 387). Karlsruhe, Germany: Institute AIFB, University of Karlsruhe.

    Google Scholar 

  • Cobb, H. G. (1990). An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments (Tech. Rep. No. 6760 (NLR Memorandum)). Washington, D.C.: Navy Center for Applied Research in Artificial Intelligence.

    Google Scholar 

  • Collard, P., Escazut, C., & Gaspar, A. (1997). An evolutionary approach for time dependant optimization. International Journal on Artificial Intelligence Tools, 6 (4), 665–695.

    Article  Google Scholar 

  • Dasgupta, D., & McGregor, D. R. (1992). Nonstationary function optimization using the structured genetic algorithm. In R. Männer & B. Manderick (Eds.), Parallel Problem Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels 1992) (pp. 145–154). Amsterdam: Elsevier.

    Google Scholar 

  • De Jong, K. (2000). Evolving in a changing world. In Z. Ras & A. Skowron (Eds.), Foundation of intelligent systems (pp. 513–519). Berlin: Springer.

    Google Scholar 

  • De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Unpublished doctoral dissertation, University of Michigan.

    Google Scholar 

  • Feng, W., Brune, T., Chan, L., Chowdhury, M., Kuek, C. K., & Li, Y. (1997). Benchmarks for testing evolutionary algorithms (Tech. Rep. No. CSC-97006). Glasgow, UK: Center for System and Control, University of Glasgow.

    Google Scholar 

  • Goldberg, D. E., & Smith, R. E. (1987). Nonstationary function optimization using genetic algorithms with dominance and diploidy. In J. J. Grefenstette (Ed.), Proc. of the Second Int. Conf. on Genetic Algorithms (pp. 59–68). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In R. M:anner & B. Manderick (Eds.), Parallel Problem Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels 1992) (pp. 137–144). Amsterdam: Elsevier.

    Google Scholar 

  • Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: a genetic algorithm approach. In 1999 Congress on Evolutionary Computation (pp. 2031–2038). Piscataway, NJ: IEEE Service Center.

    Google Scholar 

  • Hadad, B. S., & Eick, C. F. (1997). Supporting polyploidy in genetic algorithms using dominance vectors. In P. J. Angeline, R. G. Reynolds, J. R. McDonnell, & R. Eberhart (Eds.), Evolutionary Programming VI(pp. 223–234). Berlin: Springer. (Lecture Notes in Computer Science 1213)

    Chapter  Google Scholar 

  • Lewis, J., Hart, E., & Ritchie, G. (1998). A comparison of dominance mechanisms and simple mutation on non-stationary problems. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Natur—PPSN V (pp. 139–148). Berlin: Springer. (Lecture Notes in Computer Science 1498)

    Chapter  Google Scholar 

  • Mori, N., Kita, H., & Nishikawa, Y. (1996). Adaptation to a changing environment by means of the thermodynamical genetic algorithm. In H. Voigt, W. Ebeling, & I. Rechenberg (Eds.), Parallel Problem Solving from Nature— PPSN IV (Berlin, 1996) (Lecture Notes in Computer Science 1141) (pp. 513–522). Berlin: Springer.

    Chapter  Google Scholar 

  • Mori, N., Kita, H., & Nishikawa, Y. (1998). Adaptation to a changing environment by means of the feedback thormodynamical geentic algorithm. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature— PPSN V (pp. 149–158). Berlin: Springer. (Lecture Notes in Computer Science 1498)

    Chapter  Google Scholar 

  • Salomon, R., & Eggenberger, P. (1997). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, & D. Snyders (Eds.), Artificial Evolution: Third European Conf., AE’97 (pp. 251–262). Berlin: Springer.

    Google Scholar 

  • Trojanowski, K., & Michalewicz, Z. (1999). Searching for optima in non-stationary environments. In 1999 Congress on Evolutionary Computation (pp. 1843–1850). Piscataway, NJ: IEEE Service Center.

    Google Scholar 

  • Vavak, F., Fogarty, T. C., & Jukes, K. (1996). A genetic algorithm with variable range of local search for adaptive control of the dynamic systems. In Proc. of the 2nd Int. Mendelian Conf. on Genetic Algorithms.?

    Google Scholar 

  • Weicker, K. (2000). An analysis of dynamic severity and population size. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel problem solving from nature— PPSN VI (pp. 159–168). Berlin: Springer.

    Chapter  Google Scholar 

  • Weicker, K., & Weicker, N. (1999). On evolution strategy optimization in dynamic environments. In 1999 Congress on Evolutionary Computation (pp. 2039–2046). Piscataway, NJ: IEEE Service Center.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weicker, K. (2002). Performance Measures for Dynamic Environments. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45712-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44139-7

  • Online ISBN: 978-3-540-45712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics