Skip to main content

Designing Carry Look-Ahead Adders with an Adiabatic Logic Standard-Cell Library

  • Conference paper
  • First Online:
Integrated Circuit Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2451))

Abstract

Adiabatic circuits are usually designed with methodologies optimized for the application in which they are used. In this work we show how a conventional design-flow based on an adiabatic standard-cell library and semiautomatic tools allow the quick and easy design and verification of a complex adiabatic system, without loosing the energy reduction benefits. The methodology has been applied to the design of positive feedback adiabatic logic (PFAL) carry look-ahead adders (CLA). Post-layout simulations of the standard-cell PFAL CLAs show a 94% energy recovery as compared to a conventional static CMOS CLA at 10 MHz, and 86% at 100 MHz. The standard-cell PFAL CLAs are also more energy efficient or comparable than other custom adiabatic CLAs found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roy, K., Prasad, S. C.: Low-Power CMOS VLSI Circuit Design. JohnWiley & Sons, New York (2000)

    Google Scholar 

  2. Athas, W.C., Svensson, L., Koller, J.G., Tzartzanis, N., Chou, E.Y.C.: Low Power Digital Systems Based on Adiabatic Switching Principles. IEEE Trans. on VLSI Systems. Vol. 2. No. 4. Dec. 1994, pp. 399–407

    Article  Google Scholar 

  3. Younis, S.G., Knight, T.F.: Asymptotically Zero Energy Split-Level Charge Recovery Logic. Proc. Workshop Low Power Design, Napa Valley. 1994, pp. 177–182

    Google Scholar 

  4. Weste, N., Eshraghian, K.: Principles of CMOS VLSI Design. 2nd ed. Addison-Wesley (1993)

    Google Scholar 

  5. Vetuli, A., Di Pascoli, S., Reyneri, L.M.: Positive Feedback in Adiabatic Logic. Electronics Letters. Vol. 32, No. 20, Sep. 1996, pp. 1867–1869

    Article  Google Scholar 

  6. Brent, R. P., Kung, H. T.: A Regular Layout for Parallel Adders. IEEE Trans. on Computers. Vol. C-31. No. 3, Mar. 1982, pp. 260–264

    Article  MathSciNet  Google Scholar 

  7. Blotti, A., Di Pascoli, S., Saletti, R.: A Comparison of Some Circuit Schemes for Semi-Reversible Adiabatic Logic. Int. J. of Electronics. Vol. 89, No. 2, Feb. 2002, pp. 147–158

    Article  Google Scholar 

  8. Amirante, E., Bargagli-Stoffi, A., Fischer, J., Iannaccone, G., Schmitt-Landsiedel, D.: Variations of the Power Dissipation in Adiabatic Logic Gates. Proc. of 11th Int. Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS’01, Yverdon-les Bains, Switzerland, 2001, pp. 9.1.1–9.1.10

    Google Scholar 

  9. Lim, J., Kim, D.: A 16-bit Carry-Lookahead Adder using Reversible Energy Recovery Logic for Ultra Low-Energy Systems. IEEE J. of Solid State Circuits. Vol. 34, No. 6. Jun. 1999, pp. 898–903

    Article  Google Scholar 

  10. Kim, S., Papaefthymiou, M.C.: Single-Phase Source-Coupled Adiabatic Logic. Proc. on Int. Symp. on Low Power Electronics and Design, Piscataway, New York (1999), pp. 97–99

    Google Scholar 

  11. Kim, S., Papaefthymiou, M.C.: True Single-Phase Adiabatic Circuitry. IEEE Trans. on Very Large Scale Integration (VLSI) Systems. Vol.9. No. 1. Feb. 2001, pp. 52–63

    Article  Google Scholar 

  12. Ye, Y., Roy, K.: Energy Recovery Circuits Using Reversible and Partially Reversible Logic. IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications. Vol. 43. No. 9. Sep. 1996, pp. 769–778

    Article  Google Scholar 

  13. Ye, Y., Roy, K.: QSERL: Quasi-Static Energy Recovery Logic. IEEE J. of Solid-State Circuits. Vol. 36. No. 2. Feb. 2001, pp. 239–248

    Article  Google Scholar 

  14. Knapp, M.C., Kindlmann, P.J., Papaefthymiou, M.C.: Design and Evaluation of Adiabatic Arithmetic Units. Analog Integrated Circuits and Signal Processing. Vol. 14. No. 1–2. Sept. 1997, pp. 71–79

    Article  Google Scholar 

  15. Lo, C.K., Chan, P.C.H.: An Adiabatic Differential Logic for Low-Power Digital Systems. IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing. Vol. 46. No. 9. Sep. 1999, pp. 1245–1250

    Article  Google Scholar 

  16. Mahmoodi-Meimand, M., Alzali-Kusha, A.: Low-Power, Low-Noise Adder Design with Pass-Transistor Adiabatic Logic. Proc. of the 21th Intern. Conf. on Microelectronics, Theran, Nov. 2000, pp. 61–64

    Google Scholar 

  17. Moon, Y., Jeong, D.K.: An Efficient Charge Recovery Logic Circuit. IEEE J. of Solid-State Circuits. Vol. 31. No. 4. Apr. 1996, pp. 514–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blotti, A., Castellucci, M., Saletti, R. (2002). Designing Carry Look-Ahead Adders with an Adiabatic Logic Standard-Cell Library. In: Hochet, B., Acosta, A.J., Bellido, M.J. (eds) Integrated Circuit Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2002. Lecture Notes in Computer Science, vol 2451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45716-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45716-X_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44143-4

  • Online ISBN: 978-3-540-45716-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics