
On the Effectiveness of D-BSP as a
Bridging Model of Parallel Computation?

Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci

Dipartimento di Elettronica e Informatica, Università di Padova, Padova, Italy.
{bilardi,fantozzi,andrea,geppo}@artemide.dei.unipd.it

Abstract. This paper surveys and places into perspective a number of results con-
cerning the D-BSP (Decomposable Bulk Synchronous Parallel) model of compu-
tation, a variant of the popular BSP model proposed byValiant in the early nineties.
D-BSP captures part of the proximity structure of the computing platform, mod-
eling it by suitable decompositions into clusters, each characterized by its own
bandwidth and latency parameters. Quantitative evidence is provided that, when
modeling realistic parallel architectures, D-BSP achieves higher effectiveness and
portability than BSP, without significantly affecting the ease of use. It is also shown
that D-BSP avoids some of the shortcomings of BSP which motivated the defini-
tion of other variants of the model. Finally, the paper discusses how the aspects
of network proximity incorporated in the model allow for a better management
of network congestion and bank contention, when supporting a shared-memory
abstraction in a distributed-memory environment.

1 Introduction

The use of parallel computers would be greatly enhanced by the availability of a model
of computation that combines the following properties: usability, regarded as ease of
algorithm design and analysis, effectiveness, so that efficiency of algorithms in the model
translates into efficiency of execution on some given platform, and portability, which
denotes the ability of achieving effectiveness with respect to a wide class of target plat-
forms. These properties appear, to some extent, incompatible. For instance, effectiveness
requires modeling a number of platform-specific aspects that affect performance (e.g.,
interconnection topology) at the expense of portability and usability. The formulation
of a bridging model that balances among these conflicting requirements has proved a
difficult task, as demonstrated by the proliferation of models in the literature over the
years.

In the last decade, a number of bridging models have been proposed, which abstract
a parallel platform as a set of processors and a set of either local or shared memory banks
(or both) communicating through some interconnection. In order to ensure usability and
portability over a large class of platforms, these models do not provide detailed charac-
teristics of the interconnection but, rather, summarize its communication capabilities by
a few parameters that broadly capture bandwidth and latency properties.

? This research was supported, in part, by the Italian CNR, and by the Italian MURST under
Project Algorithms for Large Data Sets: Science and Engineering.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 579–588, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



580 G. Bilardi et al.

Perhaps the most popular example in this arena is Valiant’s BSP (Bulk Synchronous
Parallel) model [Val90]. A BSP machine is a set of n processors with local memory,
communicating through a router, whose computations are sequences of supersteps. In
a superstep, each processor (i) reads the messages received in the previous superstep;
(ii) performs computation on locally available data; (iii) sends messages to other pro-
cessors; and (iv) takes part in a global barrier synchronization. A superstep is charged a
cost of w + gh+ `, where w (resp., h) is the maximum number of operations performed
(resp., messages sent/received) by any processor in the superstep, and g and ` are pa-
rameters with g inversely related to the router’s bandwidth and ` capturing latency and
synchronization delays.

Similar to BSP is the LogP model proposed by Culler et al. [CKP+96] which, how-
ever, lacks explicit synchronization and imposes a more constrained message-passing
discipline aimed at keeping the load of the underlying communication network below
a specified capacity limit. A quantitative comparison developed in [BHP+96,BHPP00]
establishes a substantial equivalence between LogP and BSP as computational models
for algorithm design guided by asymptotic analysis.

In recent years, a number of BSP variants have been formulated in the literature,
whose definitions incorporate additional provisions aimed at improving the model’s
effectiveness relative to actual platforms without affecting its usability and portability
significantly (see e.g., [BGMZ95,BDM95,JW96b,DK96]). Among these variants, the
E-BSP (Extended BSP) by [JW96b] and the D-BSP (Decomposable BSP) by [DK96]
are particularly relevant for this paper. E-BSP aims at predicting more accurately the
cost of supersteps with unbalanced communication patterns, where the average number
have of messages sent/received by a processor is lower than the corresponding maximum
number, h. Indeed, on many interconnections, routing time increases with have, for fixed
h, a phenomenon modeled in E-BSP is by adding a term depending upon have to the
cost of a superstep. However, the functional shape of this term varies with the topology
of the intended target platform, making the model somewhat awkward.

D-BSP extends BSP by incorporating some aspects of network proximity into the
model. Specifically, the set of n processor/memory pairs is viewed as partitionable
as a collection of clusters, where each cluster is able to perform its own sequence of
supersteps independently of the other ones and is characterized by its own g and `
parameters, typically increasing with the size of the cluster. The partition into clusters
can change dynamically within a pre-specified set of legal partitions. The key advantage
is that communication patterns where messages are confined within small clusters have
small cost, like in realistic platforms and unlike in standard BSP. In fact, it can be shown
quantitatively that this advantage translates into higher effectiveness and portability of
D-BSP over BSP. Clustering also enables efficient routing of unbalanced communication
patterns in D-BSP, making it unnecessary to further extend the cost model in the direction
followed by E-BSP. Thus, D-BSP is an attractive candidate among BSP variants and, in
general, among bandwidth-latency models, to strike a fair balance among the conflicting
features sought in a bridging model of parallel computation.

In Section 2, we define a restricted version of D-BSP where clusters are defined
according to a regular recursive structure, which greatly simplifies the use of the model
without diminishing its power significantly. In Section 3, we employ the methodology
based on cross-simulations proposed in [BPP99] to quantitatively assess the higher



On the Effectiveness of D-BSP as a Bridging Model 581

effectiveness of D-BSP with respect to BSP, relatively to the wide class of processor
networks. Then, in Subsection 3.1 we show that, for certain relevant computations and
prominent topologies, D-BSP exhibits a considerably higher effectiveness than the one
guaranteed by the general result. In such cases, the effectiveness of D-BSP becomes close
to optimal. Furthermore, we present a general strategy to exploit communication locality:
one of the corollaries is a proof that D-BSP can be as effective as E-BSP in dealing
with unbalanced communication patterns. Finally, in Section 4 we show how D-BSP
can efficiently support a shared memory abstraction, a valuable provision for algorithm
development in a distributed-memory environment. The results presented in the section
clearly indicate that the network proximity modeled by D-BSP can be exploited to reduce
network congestion and bank contention when implementing a shared address space both
by randomized and by deterministic strategies.

2 The D-BSP Model

The D-BSP (Decomposable BSP) model was introduced in [DK96] as an extension of
Valiant’s BSP [Val90] aimed at capturing, in part, the proximity structure of the network.
In its most general definition, the D-BSP is regarded as a set of n processor/memory pairs
communicating through a router, which can be aggregated according to a predefined
collection of submachines, each able to operate independently. For concreteness, we
focus our attention on a restricted version of the model (referred to as recursive D-BSP
in [DK96]) where the collection of submachines has the following regular structure.
Let n be a power of two. For 0 ≤ i ≤ log n, the n processors are partitioned into
2i fixed, disjoint i-clusters C

(i)
0 , C

(i)
1 , · · · , C(i)

2i−1 of n/2i processors each, where the
processors of a cluster are able to communicate among themselves independently of
the other clusters. The clusters form a hierarchical, binary decomposition tree of the
D-BSP machine: specifically, C log n

j contains only processor Pj , for 0 ≤ j < n, and

C
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 , for 0 ≤ i < log n and 0 ≤ j < 2i.

A D-BSP computation consists of a sequence of labelled supersteps. In an i-
superstep, 0 ≤ i ≤ log n, each processor executes internal computation on locally
held data and sends messages exclusively to processors within its i-cluster. The su-
perstep is terminated by a barrier, which synchronizes processors within each i-cluster
independently. It is assumed that messages sent in one superstep are available at the des-
tinations only at the beginning of the subsequent superstep. Let g = (g0, g1, . . . , glog n)
and ` = (`0, `1, . . . , `log n). If each processor performs at most w local operations, and
the messages sent in the superstep form an h-relation (i.e., each processor is source or
destination of at most h messages), then, the cost of the i-superstep is upper bounded
by w + hgi + `i, for 0 ≤ i ≤ log n. Parameters gi and `i are related to the bandwidth
and latency guaranteed by the router when communication occurs within i-clusters. We
refer to such a model as a D-BSP (n, g, `).

Note that the standard BSP(n, g, `) defined by Valiant can be regarded as a D-
BSP (n, g, `) with gi = g and `i = ` for every i, 0 ≤ i ≤ log n. In other words, D-BSP
introduces the notion of proximity in BSP through clustering, and groups h-relations
into specialized classes associated with different costs. This ensures full compatibility



582 G. Bilardi et al.

between the two models, which allows programs written according to one model to run on
any machine supporting the other, the only difference being their estimated performance.

In this paper, we will often exemplify our considerations by focusing on a class
of parameter values for D-BSP of particular significance. Namely, let α and β be two
arbitrary constants, with 0 < α, β < 1.We will consider D-BSP (n, g(α), `(β)) machines
with {

g
(α)
i = G · (n/2i)α,

`
(β)
i = L · (n/2i)β ,

0 ≤ i ≤ log n,

where G and L are two arbitrary positive constants. Note that these parameters capture a
wide family of machines whose clusters feature moderate bandwidth/latency properties,
such as, for example, multidimensional arrays.

3 D-BSP and Processor Networks

Intuitively, a computational model M , where designers develop and analyze algorithms,
is effective with respect to a platform M ′, on which algorithms are eventually imple-
mented and executed, if the algorithmic choices based on M turn out to be the right
choices in relation to algorithm performance on M ′. In other words, one hopes that
the relative performance of any two algorithms developed on M reflects the relative
performance of their implementations on M ′. In order to attain generality, a compu-
tational model abstracts specific architectural details (e.g., network topology), while it
incorporates powerful features that simplify its use but may not be exhibited by certain
platforms. Therefore, in order to evaluate the effectiveness of a model M with respect to
a platform M ′, we must establish the performance loss incurred by running algorithms
developed for M (which do not exploit platform-specific characteristics) on M ′, and, on
the other hand, we must assess how efficiently features offered by M to the algorithm
designer, can be supported on M ′.

More precisely, let us regard M and M ′ as two different machines, and define
S(M, M ′) (resp., S(M ′, M)) as the minimum slowdown needed for simulating M on
M ′ (resp., M ′ on M ). In [BPP99] a quantitative measure of effectiveness of M with re-
spect to M ′ is given, and it is shown that the product δ(M, M ′) = S(M, M ′)S(M ′, M)
provides an upper bound to this measure. Namely, effectiveness decreases with increas-
ing δ(M, M ′) and is highest for δ(M, M ′) = 1. When maximized over all platforms
M ′ in a given class, this quantity provides an upper measure of the portability of M
with respect to the class.

We use this approach to evaluate the effectiveness of D-BSP with respect to the class
of processor networks. Let G be a connected n-processor network, where in one step
each processor executes a constant number of local operations and may send/receive
one point-to-point message to/from each neighboring processor (multi-port regimen).
As is the case for all relevant network topologies, we assume that G has a decomposition
tree {G

(i)
0 , G

(i)
1 , · · · , G(i)

2i−1 : ∀i, 0 ≤ i ≤ log n}, where each G
(i)
j is a connected

subnet (i-subnet) with n/2i processors and G
(i)
j = G

(i+1)
2j ∪ G

(i+1)
2j+1 . By combining

the routing results of [LR99,LMR99] one can easily show that for every 0 ≤ i ≤
log n there exist suitable values gi and `i related, respectively, to the bandwidth and
diameter characteristics of the i-subnets, such that an h-relation followed by a barrier



On the Effectiveness of D-BSP as a Bridging Model 583

synchronization within an i-subnet can be implemented in O (hgi + `i) time. Let M be
a D-BSP (n, g, `) with these particular gi and `i values, for 0 ≤ i ≤ log n. Clearly, we
have that

S(M, G) = O (1) . (1)

Vice-versa, an upper bound to the slowdown incurred in simulating G on M is provided
by the following theorem proved in [BPP99, Theorem 3].

Theorem 1. Suppose that at most bi links connect every i-subnet to the rest of the
network, for 1 ≤ i ≤ log n. Then, one step of G can be simulated on the D-BSP (n, g, `)
in time

S(G, M) = O


min

n′≤n


 n

n′ +
log n−1∑

i=log(n/n′)

(gi max{hi, hi+1} + `i)





 , (2)

where hi = dbi−log(n/n′)/(n/2i)e, for 0 ≤ i ≤ log n.

We can apply Equations 1 and 2 to quantitatively estimate the effectiveness of D-BSP
with respect to specific network topologies. Consider, for instance, the case of an n-node
d-dimensional array. Fix gi = `i = (n/2i)1/d, for 0 ≤ i ≤ log n. Such D-BSP (n, g, `)
can be simulated on G with constant slowdown. Since G has a decomposition tree
with subnets G

(i)
j that have bi = O

(
(n/2i)(d−1)/d

)
, the D-BSP simulation quoted in

Theorem 1 yields a slowdown of S(G, M) = O
(
n1/(d+1)

)
per step. In conclusion,

letting M be the D-BSP with the above choice of parameters, we have that δ(M, G) =
O

(
n1/(d+1)

)
. The upper bound on S(G, M) can be made exponentially smaller when

each array processor has constant-size memory. In this case, by employing a more

sophisticated simulation strategy, we can get S(G, M) = O
(
2Θ(

√
log n)

)
[BPP99],

thus significantly improving D-BSP’s effectiveness.
It is important to remark that the D-BSP clustered structure provides a crucial contri-

bution to the model’s effectiveness. Indeed, it can be shown that, if M ′ is a BSP(n, g, `)
and G is a d-dimensional array, then δ(M ′, G) = Ω

(
n1/d

)
independently of g, l and

the size of the memory at each processor [BPP99]. This implies that, under the δ met-
ric, D-BSP is asymptotically more effective than BSP with respect to multidimensional
arrays.

3.1 Effectiveness of D-BSP with Respect to Specific Computations

We note that non-constant slowdown for simulating an arbitrary computation of a proces-
sor network on a D-BSP is to be expected since the D-BSP disregards the fine structure of
the network topology, and, consequently, it is unable to fully exploit topological locality.
However, for several prominent topologies and several relevant computational problems
arising in practical applications, the impact of such a loss of locality is much less than
what the above simulation results may suggest, and, in many cases, it is negligible.

Consider, for example, the class of processor networks G whose topology has a
recursive structure with bisection bandwidth O

(
n1−α

)
and diameter O

(
nβ

)
, for arbi-

trary constants 0 < α, β < 1 (note that multidimensional arrays belong to this class).



584 G. Bilardi et al.

In this case, the results of [LR99,LMR99] imply that a D-BSP (n, g(α), `(β)) M can
be efficiently supported on G, so that S(M, G) = O (1). Hence, algorithms devised
on M can be implemented on G with at most constant loss of efficiency. Although the
reverse slowdown S(G, M) is in general non-constant, we now show that M allows us
to develop algorithms for a number of relevant computational problems, which exhibit
optimal performance when run on G. Hence, for these problems, the loss of locality of
M with respect to G is negligible.

Let N ≥ n items be evenly distributed among the n processors. A parallel pre-
fix on these items (N -prefix) requires time Ω

(
N/n + nβ

)
to be performed on G

[Lei92]. On the D-BSP (n, g(α), `(β)) there is a parallel prefix algorithm that runs
in time O

(
N/n + nα + nβ

)
[DK96]. Clearly, when α ≤ β the implementation of

the D-BSP algorithm on G exhibits optimal performance. We remark that optimality
cannot be obtained using the standard BSP model. Indeed, results in [Goo96] imply
that the direct implementation on G of any BSP algorithm for N -prefix, runs in time
Ω

(
nβ log n/ log(1 + dnβ−αe)), which is not optimal, for instance, when α = β.
We call k-sorting a sorting problem in which k keys are initially assigned to each

one of n processors and are to be redistributed so that the k smallest keys will be held by
processor P0, the next k smallest ones by processor P1, and so on. It is easy to see that
k-sorting requires time Ω

(
knα + nβ

)
to be performed on G because of the bandwidth

and diameter of the network. On the D-BSP (n, g(α), `(β)) there is an algorithm that
performs k-sorting in time O

(
knα + nβ

)
[FPP01], which is clearly optimal when ported

to G. Again, a similar result is not possible with standard BSP: the direct implementation
on G of any BSP algorithm for k-sorting runs in time Ω

(
(log n/ log k)(knα + nβ)

)
,

which is not optimal for small k.
As a final important example, consider a (k1, k2)-routing problem where each pro-

cessor is the source of at most k1 packets and the destination of at most k2 packets.
Observe that a greedy routing strategy where all packets are delivered in one superstep
requires Θ

(
max{k1, k2} · nα + nβ

)
time on a D-BSP (n, g(α), `(β)), which is the best

one could do on a BSP(n, nα, nβ). However, a careful exploitation of the submachine
locality exhibited by the D-BSP yields a better algorithm for (k1, k2)-routing, which runs
in time O

(
kα
mink1−α

maxnα + nβ
)
, where kmin = min{k1, k2} and kmax = max{k1, k2}

[FPP01]. Indeed, standard lower bound arguments show that such a routing time is
optimal for G [SK94].

As a corollary of the above routing result, we can show that, unlike the standard BSP
model, D-BSP is also able to handle unbalanced communication patterns efficiently,
which was the main objective that motivated the introduction of a BSP variant, called
E-BSP, by [JW96a]. Let an (h, m)-relation be a routing instance where each processor
sends/receives at most h messages, and a total of m messages are exchanged. Although
a greedy routing strategy for an (h, m)-relation requires time Θ

(
hnα + nβ

)
on both

D-BSP and BSP, the exploitation of submachine locality in D-BSP allows us to route
any (h, m)-relation in time O

(dm/neαh1−αnα + nβ
)
, which is equal or smaller than

the greedy routing time and it is optimal for G. Consequently, D-BSP can be as effective
as E-BSP in dealing with unbalanced communication as E-BSP, where the treatment of
unbalanced communication is a primitive of the model.



On the Effectiveness of D-BSP as a Bridging Model 585

4 Providing Shared Memory on D-BSP

A very desirable feature of a distributed-memory model is the ability to support a shared
memory abstraction efficiently. Among the other benefits, this feature allows porting the
vast body of PRAM algorithms [JáJ92] to the model at the cost of a small time penalty. In
this section we present a number of results that demonstrate that D-BSP can be endowed
with an efficient shared memory abstraction.

Implementing shared memory calls for the development of a scheme to represent m
shared cells (variables) among the n processor/memory pairs of a distributed-memory
machine in such a way that any n-tuple of variables can be read/written efficiently by
the processors. The time required by a parallel access to an arbitrary n-tuple of variables
is often referred to as the slowdown of the scheme.

Numerous randomized and deterministic schemes have been developed in the lit-
erature for a number of specific processor networks. Randomized schemes (see e.g.,
[CMS95,Ran91]) usually distribute the variables randomly among the memory modules
local to the processors.As a consequence of such a scattering, a simple routing strategy is
sufficient to access any n-tuple of variables efficiently, with high probability. Following
this line, we can give a simple, randomized scheme for shared memory access on D-BSP.
Assume, for simplicity, that the variables be spread among the local memory modules
by means of a totally random function. In fact, a polynomial hash function drawn from
a log n-universal class [CW79], suffices to achieve the same results [MV84], but it takes
only poly(log n) rather than O (n log n) random bits to be generated and stored at the
nodes. We have:

Theorem 2. Any n-tuple of memory accesses on a D-BSP (n, g, `) can be performed
in time

O


blog(n/ log n)c−1∑

i=0

Tpr(i) + gblog(n/ log n)c
log n

log log n
+ `blog(n/ log n)c


 (3)

with high probability, where Tpr(i) denotes the time of a prefix-sum operation within an
i-cluster.

Proof (Sketch). Consider the case of write accesses. The algorithm consists of
blog(n/ log n)c + 1 steps. More specifically, in Step i, for 1 ≤ i ≤ blog(n/ log n)c,
we send the messages containing the access requests to their destination i-clusters, so
that each node in the cluster receives roughly the same number of messages. A standard
occupancy argument [MR95] suffices to show that, with high probability, there will be
no more than λn/2i messages destined to the same i-cluster, for a given small constant
λ > 1, hence each step requires a simple prefix and the routing of an O(1)-relation in
i-clusters. In the last step, we simply send the messages to their final destinations, where
the memory access is performed. Again, the same probabilistic argument implies that
the degree of the relation in this case is O (log n/ log log n), with high probability.

For read accesses, the return journey of the messages containing the accessed values
can be performed by reversing the algorithm for writes, thus remaining within the same
time bound.

By plugging in the time for prefix in Eq. (3) we obtain:



586 G. Bilardi et al.

Corollary 1. Any n-tuple of memory accesses can be performed in optimal time
O

(
nα + nβ

)
, with high probability, on a D-BSP (n, g(α), `(β)).

Observe that under a uniform random distribution of the variables among the
memory modules, Θ (log n/ log log n) out of any set of n variables will be stored in
the same memory module, with high probability, hence any randomized access strat-
egy without replication would require at least Ω

(
nα log n/ log log n + nβ

)
time on a

BSP(n, nα, nβ).
Let us now switch to deterministic schemes. In this case, achieving efficiency is

much harder, since, in order to avoid the trivial worst-case where a few memory modules
contain all of the requested data, we are forced to replicate each variable and manage
replicated copies so to enforce consistency. A typical deterministic scheme replicates
every variable into ρ copies, which are then distributed among the memory modules
through a map exhibiting suitable expansion properties. Expansion is needed to guarantee
that the copies relative to any n-tuple of variables be never confined within few nodes.
The parameter ρ is referred to as the redundancy of the scheme. In order to achieve
efficiency, the main idea, originally introduced in [UW87] and adopted in all subsequent
works, is that any access (read or write) to a variable is satisfied by reaching only
a subset of its copies, suitably chosen to maximize communication bandwidth while
ensuring consistency (i.e., a read access must always return the most updated value of
the variable).

A general deterministic scheme to implement a shared memory abstraction on a D-
BSP is presented in [FPP01]. The scheme builds upon the one in [PPS00] for a number of
processor networks, whose design exploits the recursive decomposition of the underlying
topology to provide a hierarchical, redundant representation of the shared memory based
on k + 1 levels of logical modules. Such an organization fits well with the structure of a
D-BSP, which is hierarchical in nature. More specifically, each variable is replicated into
r = O (1) copies, and the copies are assigned to r logical modules of level 0. In general,
the logical modules at the i-th level, 0 ≤ i < k are replicated into three copies, which are
assigned to three modules of level i + 1. This process eventually creates r3k = Θ

(
3k

)
copies of each variable, and 3k−i replicas of each module at level i. The number (resp.,
size) of the logical modules decreases (resp., increases) with the level number, and their
replicas are mapped to the D-BSP by assigning each distinct block to a distinct cluster of
appropriate size, so that each of the sub-blocks contained within the block is recursively
assigned to a sub-cluster.

The key ingredients of the above memory organization are represented by the bipartite
graph that governs the distribution of the copies of the variables among the modules of
the first level, and those that govern the distribution of the replicas of the modules at the
subsequent levels. The former graph is required to exhibit some weak expansion property,
and its existence can always be proved through combinatorial arguments although, for
certain memory sizes, explicit constructions can be given. In contrast, all the other graphs
employed in the scheme require expansion properties that can be obtained by suitable
modifications of the BIBD graph [Hal86], and can always be explicitly constructed.

For ann-tuple of variables to be read/written, the selection of the copies to be accessed
and the subsequent execution of the accesses of the selected copies are performed on
the D-BSP through a protocol similar to the one in [PPS00], which can be implemented
through a combination of prefix, sorting and (k1, k2)- routing primitives. By employing



On the Effectiveness of D-BSP as a Bridging Model 587

the efficient D-BSP implementations for these primitives discussed in Section 3, the
following result is achieved on a D-BSP (n, g(α), `(β)) [FPP01, Corollary 1].

Theorem 3. For any value m upper bounded by a polynomial in n there exists a scheme
to implement a shared memory of size m on a D-BSP (n, g(α), `(β)) with optimal slow-
down Θ

(
nβ

)
and constant redundancy, when α < β, and slowdown Θ (nα log n) and

redundancy O
(
log1.59 n

)
, when α ≥ β. The scheme requires only weakly expanding

graphs of constant degree and can be made fully constructive for m = O
(
n3/2

)
and

α ≥ 1/2.

An interesting consequence of the above theorem is that it shows that optimal worst-
case slowdowns for shared memory access are achievable with constant redundancy for
machines where latency overheads dominate over those due to bandwidth limitations,
as is often the case in network-based parallel machines. When this is not the case, it is
shown in [FPP01] that the proposed scheme is not too far-off from being optimal.

Perhaps, the most important feature of the above scheme is that, unlike the other
classical deterministic schemes in the literature, it solely relies on expander graphs of
mild expansion, hence it can be made fully constructive for a significant range of the
parameters involved. Such mild expanders, however, are only able to guarantee that the
copies of an arbitrary n-tuple of variables be spread among O

(
n1−ε

)
memory modules,

for some constant ε < 1. Hence the congestion at a single memory module can be as high
as O (nε) and the clusterized structure of D-BSP is essential in order to achieve good
slowdown. In fact, any deterministic strategy employing these graphs on a BSP(n, g, `)
could not achieve better than Θ (gnε) slowdown.

References

[BDM95] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel
algorithms: c-optimal multisearch for and extension of the BSP model. In Proc. of
the 3rd European Symposium on Algorithms, pages 17–30, 1995.

[BGMZ95] G.E. Blelloch, P.B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory
bank contention and delay in high-bandwidth multiprocessors. In Proc. of the 7th
ACM Symp. on Parallel Algorithms and Architectures, pages 84–94, Santa Barbara,
CA, July 1995.

[BHP+96] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP.
In Proc. of the 8th ACM Symp. on Parallel Algorithms and Architectures, pages
25–32, 1996. To appear in Algorithmica, Special Issue on Coarse Grained Parallel
Algorithms.

[BHPP00] G. Bilardi, K. Herley, A. Pietracaprina, and G. Pucci. On stalling in LogP. In Proc.
of the Workshop on Advances in Parallel and Distributed Computational Models,
LNCS 1800, pages 109–115, May 2000.

[BPP99] G. Bilardi, A. Pietracaprina, and G. Pucci. A quantitative measure of portability
with application to bandwidth-latency models for parallel computing. In Proc. of
EUROPAR 99, LNCS 1685, pages 543–551, September 1999.

[CKP+96] D.E. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K.E. Schauser, R. Subra-
monian, and T.V. Eicken. LogP: A practical model of parallel computation. Com-
munications of the ACM, 39(11):78–85, November 1996.



588 G. Bilardi et al.

[CMS95] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simulations
with triple-logarithmic delay. In Proc. of the 3rd European Symposium on Algo-
rithms, pages 46–59, 1995.

[CW79] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979.

[DK96] P. De la Torre and C.P. Kruskal. Submachine locality in the bulk synchronous setting.
In Proc. of EUROPAR 96, LNCS 1124, pages 352–358, August 1996.

[FPP01] C. Fantozzi, A. Pietracaprina, and G. Pucci. Implementing shared memory on clus-
tered machines. In Proc. of 2nd International Parallel and Distributed Processing
Symposium, 2001. To appear.

[Goo96] M.T. Goodrich. Communication-efficient parallel sorting. In Proc. of the 28th ACM
Symp. on Theory of Computing, pages 247–256, Philadelphia, Pennsylvania USA,
May 1996.

[Hal86] M. Hall Jr. Combinatorial Theory. John Wiley & Sons, New York NY, second
edition, 1986.

[JáJ92] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley, Reading MA,
1992.

[JW96a] B.H.H. Juurlink and H.A.G. Wijshoff. The E-BSP model: Incorporating general
locality and unbalanced communication into the BSP model. In Proc. of EUROPAR
96, LNCS 1124, pages 339–347, August 1996.

[JW96b] B.H.H. Juurlink and H.A.G. Wijshoff. A quantitative comparison of paralle com-
putation models. In Proc. of the 8th ACM Symp. on Parallel Algorithms and Archi-
tectures, pages 13–24, June 1996.

[Lei92] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays • Trees
• Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[LMR99] F.T. Leighton, B.M. Maggs, and A.W. Richa. Fast algorithms for finding
O(congestion + dilation) packet routing schedules. Combinatorica, 19(3):375–401,
1999.

[LR99] F.T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46(6):787–832,
1999.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge MA, 1995.

[MV84] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel memories. Acta Infor-
matica, 21:339–374, 1984.

[PPS00] A. Pietracaprina, G. Pucci, and J. Sibeyn. Constructive, deterministic implementa-
tion of shared memory on meshes. SIAM Journal on Computing, 30(2):625–648,
2000.

[Ran91] A.G. Ranade. How to emulate shared memory. Journal of Computer and System
Sciences, 42:307–326, 1991.

[SK94] J.F. Sibeyn and M. Kaufmann. Deterministic1-k routing on meshes, with application
to hot-potato worm-hole routing. In Proc. of the 11th Symp. on Theoretical Aspects
of Computer Science, LNCS 775, pages 237–248, 1994.

[UW87] E. Upfal and A. Widgerson. How to share memory in a distributed system. Journal
of the ACM, 34(1):116–127, 1987.

[Val90] L.G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, August 1990.


	Introduction
	The D-BSP Model
	D-BSP and Processor Networks
	Effectiveness of D-BSP with Respect to Specific Computations

	Providing Shared Memory on D-BSP

