
Heuristic Solutions for the Multiple-Choice Multi-
Dimension Knapsack Problem

Md Mostofa Akbar1, 2, Eric G. Manning3, Gholamali C. Shoja2, Shahadat Khan4

2 Department of CS, PANDA Lab, UVic, Victoria, BC, Canada
{mostofa,gshoja}@csc.uvic.ca

3
Department of CS and ECE,PANDA Lab, UVic, Victoria, BC, Canada

Eric.Manning@engr.UVic.ca
4 Eyeball.com, Suite 409-100 Park Royal, West Vancouver, B.C. Canada

shahadat@eyeball.com

Abstract.

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a
variant of the 0-1 Knapsack Problem, an NP-Hard problem. Hence algorithms
for finding the exact solution of MMKP are not suitable for application in real
time decision-making applications, like quality adaptation and admission
control of an interactive multimedia system. This paper presents two new
heuristic algorithms, M-HEU and I-HEU for solving MMKP. Experimental
results suggest that M-HEU finds 96% optimal solutions on average with
much reduced computational complexity and performs favorably relative to
other heuristic algorithms for MMKP. The scalability property of I-HEU
makes this heuristic a strong candidate for use in real time applications.

1 Introduction

The classical 0-1 Knapsack Problem (KP) is to pick up items for a knapsack for
maximum total value, so that the total resource required does not exceed the resource
constraint R of the knapsack. 0-1 classical KP and its variants are used in many
resource management applications such as cargo loading, industrial production, menu
planning and resource allocation in multimedia servers.

Let there be n items with values v1,v2,…,vn and the corresponding resources required
to pick the items are r1,r2,…,rn respectively. The items can represent services and their
associated values can be utility or revenue earned from that service. In mathematical

notation, the 0-1 knapsack problem is to find V= maximize i

n

i
ivxå

=1

, where Rrx
n

i
ii £å

=1

and }1,0{˛ix .

The MMKP is a variant of the KP. Let there be n groups of items. Group i has

il items. Each item of the group has a particular value and it requires m resources.

The objective of the MMKP is to pick exactly one item from each group for

1 Supported by grants from Canadian Commonwealth Scholarship Program.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 659−668, 2001.
Ó Springer-Verlag Berlin Heidelberg 2001

maximum total value of the collected items, subject to m resource constraints of the
knapsack. In mathematical notation, let ijv be the value of the j th item of the i th

group,),,,(21 ijmijijij rrrr L
r

= be the required resource vector for the j th item of the

i th group and),,,(21 mRRRR L
r

= , be the resource bound of the knapsack. Then

the problem is to find V = maximize å å
= =

n

i

l

j
ijij

i

vx
1 1

, so that, å å
= =

£
n

i
k

l

j
ijkij Rrx

i

1 1

, k = 1,

2,…, m and å
=

=
il

j
ijx

1

 ,1 }1,0{˛ijx , the picking variables. Here V is called the value of

the solution.

Fig. 1. Knapsack Problem.

Fig. 1 illustrates the MMKP. We have to pick exactly one item from each group. Each
item has two resources, r1 and r2. The objective of picking items is to achieve
maximum total value of the picked items subject to the resource constraint of the
knapsack, that å £ 17items) picked of (1r and å £ 15items) picked of (2r .

Many practical problems in resource management can be mapped to the MMKP. The
Utility Model for adaptive multimedia systems proposed in [4, 5] is actually an
MMKP. Users submitting their requests to a multimedia system can be represented by
the groups of items. Each level of QoS (Quality of Service) of a user’s requested
session is equivalent to an item; each session is equivalent to a group of items. The
values of the items are equivalent to offered prices for the session. The multimedia
server is equivalent to the knapsack with limited resources, e.g. CPU cycles, I/O
bandwidth and memory. The proposed exact solutions in [1, 2] are so computationally
expensive that they are not feasible to apply in real time applications such as
multimedia systems. Hence heuristic or approximate algorithms for solving the
MMKP have an important role in solving real time problems.

In this paper, we present two heuristic algorithms for solving the MMKP, which are
suitable for application in real time multimedia problems. Some related work on KP
and MMKP will be described in section 2. In section 3 the heuristic algorithms M-
HEU and I-HEU will be presented with complexity analysis. Some experimental
results showing comparisons with other methods of solving the MMKP will be given
in section 4. Section 5 concludes the paper, mentioning some of the possible
applications of this algorithm in real time applications.

v =10
r1=5, r2=7

v =14
r1=4, r2=7

v =9
r1=5, r2=5

v =11
r1=8, r2=2

v =12
r1=7, r2=7

v =7
r1=5, r2=3

v =17
r1=10, r2=8

Item

Maximum
allowable
resource
Type r1: 17
Type r2: 15

Knapsack
Group 1 Group 2 Group 3

v =13
r1=6, r2=4

660 M. Akbar et al.

2 Related Work

There are different algorithms for solving variants of knapsack problems [8]. Actually
MMKP is the combination of MDKP and MCKP. The Multi-Dimension Knapsack
Problem (MDKP) is one kind of KP where the resources are multidimensional, i.e.
there are multiple resource constraints for the knapsack. The Multiple Choice
Knapsack Problem (MCKP) is another KP where the picking criterion for items is
restricted. In this variant of KP there are one or more groups of items. Exactly one
item will be picked from each group.

There are two methods of finding solutions for an MMKP: one is a method for finding
exact solutions and the other is heuristic. Finding exact solutions is NP hard. Using
the branch and bound with linear programming (BBLP) technique, Kolesar, Shih,
Nauss and Khan presented exact algorithms for 0-1 KP, MDKP, MCKP and MMKP
respectively [2, 4, 5, 10, 12]. Although the use of linear programming to determine
the feasibility of picking any item of any group reduces the time requirement in the
average case, it is not feasible to apply in all practical cases.

A greedy approach has been proposed [5, 8, 13] to find near optimal solutions of
knapsack problems. For a 0-1 KP as described in section 1, items are picked from the
top of a list sorted in descending order on ii rv [8]. To apply the greedy method to

the MDKP Toyoda proposed a new measurement called aggregate resource
consumption [13]. Khan [4] has applied the concept of aggregate resource
consumption to pick a new item in a group to solve the MMKP. His heuristic HEU
selects the lowest-valued items by utility or revenue of each group as initial solution.
It then upgrades the solution by choosing a new item from a group which has the
highest positive Daij, the change in aggregate consumed resource (the item which
gives the best revenue with the least aggregate resource). If no such item is found then
an item with the highest (Dvij)/(Daij) (maximum value gain per unit aggregate resource
expended) is chosen. Here,

() CCrra k
k

ijkkiiij

r
·-=D å][r , increase in aggregate consumed resource. (1)

rijk=amount of the kth resource consumption of the jth item of the ith group.
r[i]= index of selected item from the ith group and Ck= amount of the kth resource
consumption.

ijiiij vvv -=D][r , gain in total value.

This heuristic for MMKP provides solutions with utility on average equal to 94% of

the optimum, with a worst case time complexity of ()()22 1-lmnO . Here, n = number

of groups, l =number of items in each group (assumed constant for convenience of
analysis) and m =resource dimension.

Magazine and Oguz [7] proposed another heuristic based on Lagrange Multipliers to
solve the MDKP. Moser’s [9] heuristic algorithm also uses the concept of graceful
degradation from the most valuable items based on Lagrange Multipliers to solve the
MMKP. This algorithm is also suitable for real time application of MMKP problems
and it performs better than HEU in terms of optimality when both methods reach a
solution [4]. It has been observed from experiments that Moser’s method does not

661Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem

always give a solution when there is a solution obtainable by selecting the least
valuable items from each group. HEU does not have that difficulty because it starts
from the least valuable items. But, HEU will fail to find a solution when the
bottommost elements do not give feasible solution, while some items with higher
values but with less resource consumption do.

3 Proposed Heuristic Algorithm for MMKP

3.1 Modified HEU (M-HEU)

We have to sort the items of each group in non-decreasing order according to the
value associated with each item. Hence, we can say that in each group the bottom
items are lower-valued items than the top ones. The items at the top can be defined as
higher-valued items than those in the bottom. If a particular pick of items (one from
each group) does not satisfy the resource constraint, we define the solution infeasible.
A feasible solution is a solution that satisfies the resource constraints. For any
resource k, kk RC can be defined as infeasibility factor fk. The kth resource is

feasible if the infeasibility factor 1£kf , otherwise it is infeasible.

We find that HEU requires additional steps to find a feasible solution if the lowest
quality items from each group represent an infeasible solution. HEU finds a solution
by only upgrading the selected items of each group. There might be some higher-
valued items in the MMKP, which make the solution infeasible, but if some of the
groups are downgraded we can get a feasible solution. This method of upgrading
followed by downgrading may increase the total value of the solution.

Steps in the Algorithm
Step 1: Finding a feasible solution
Step 1.1: Select the lowest-valued items from each group.
Step 1.2: If the resource constraints are satisfied then notify “This MMKP has a
solution”. So go to step 2, else the solution is infeasible.
Step 1.3: Find out the resource km, which has the highest infeasibility factor. This is
the most infeasible resource. Select a high-valued item from any group, which
decreases

mkf , does not increase the infeasiblity factor, of the other resources, does

not make any feasible resource requirement into an infeasible one, and gives the
highest Daij, which has been defined by (1).
Step 1.4: If an item is found in step 1.3 then go to step 1.2 else notify “No Solution
Found”.
Step 2: Upgrading the selected feasible solution
/*This step is identical to the iteration performed in HEU*/
Step 2.1: Find a higher valued item from a group than the selected item of that group
subject to the resource constraint which has the highest positive Daij. If no such item is
found then an item with the highest (Dvij)/(Daij) is chosen.
Step 2.2: If no such item is found in step 2.1 then go to step 3 else look for another
items in step 2.1.
Step 3: Upgrading using one upgrade followed by at least one downgrade

662 M. Akbar et al.

Step 3.1: If there are higher-valued items than the selected item in any group then find
such a higher-valued item (whatever is the resource constraint) which has the highest
value of () ()ijij rav ¢DD . Here,

å
-

-
=¢D

k kk

ijkkii
ij CR

rr
a

][r
= the ratio of increased resource requirement to

available resource, where, Rk= kth resource constraint.

(2)

Step 3.2: Find a lower-valued item than the selected item of the groups such that the
downgrade still gives higher total value than the total value achieved in Step 2 and has
the highest value of () ijij va D¢¢D

å
-

-
=¢¢D

k kk

ijkkii
ij RC

rr
a

][r
= the ratio of decreased resource requirement to

overconsumed resource.

(3)

Step 3.3: If an item is found in step 3.2 then
If the item satisfies the resource constraint then look for a better
solution in step 2 else go to step 3.2 for another downgrade.

Else
Revive the solution we found at the end of step 2 and terminate.

Endif

3.2 Incremental Solution of the MMKP (I-HEU)

If the number of groups in the MMKP is very large then it is not efficient to run M-
HEU once per minute, as a real time system, for example a multimedia system with
10000 sessions might well require. An incremental solution is a necessity to achieve
better computation speed. By changing the step of finding a feasible solution (Step 1)
we can use M-HEU to solve the MMKP incrementally, starting from an already
solved MMKP with a smaller number of groups. The changed sub-steps in step 1 are
as follows.
Step 1.1: Select the lowest-valued item (according to value) from each new group.
Step 1.3: This step is similar to the step 1.3 of M-HEU except that here we have to
find any item instead of “Higher-valued Item”.
I-HEU does the feasibility test in step 1 with the lowest-valued items. I-HEU will
require pretty much the same time if it finds the near optimal solution after doing a lot
of upgrading and downgrading in the older groups as well as new groups. It will give
the best performance when the solution is determined by upgrading or downgrading
only the new groups of items. Typically, it is unlikely that it will require abrupt
changes in the already solved groups while running step 2 and 3 of I-HEU. Thus we
can expect some time advantage with this incremental method over M-HEU.

3.3 Analysis of the Algorithm

Non Regenerative Property: The three steps of M-HEU never regenerate a solution
that has been found previously. The straightforward reasons for this convergence
property are as follows:

663Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem

• Step 1 never makes any feasible resource requirement infeasible or infeasible
resource requirement more infeasible.

• Step 2 always upgrades the solution vector with increased total value.
• Step 3 upgrades one item followed by downgrading one or more items for an

increase in total value, thereby excluding the possibility of regenerating a
previously determined solution or of infinite looping.

Complexity of the Algorithm: The computational complexity of step 1 will be the
worst when there is no feasible solution or there is a feasible solution located at the
highest valued item of each group and at each iteration only one item of one group
moves one level up. Initially the selected items of each group is the lowest-valued
item of each group. So the total upgrade in group i is (li – 1). The total number of

upgrades in step 1 is ()å
=

-
n

i

l
1

1 . For convenience of analysis we assume that all groups

contain the same number of items, i.e., li=l. So step 1.3 and step 1.4 will be executed
()nnl - times each.

Total floating point operations in step 1 is () (){ }
()

å
--

=
++·--

11

0
216

nl

j
mmjnnl

Complexity in step 1, () () () ()
2

1
15

2

1
13

22
22

1
-

+-+
-

+-=
ln

mln
ln

mlnT
(4)

Step 2 requires the highest computation when there is a feasible solution located at the
bottom most item of each group (initial solution), step 2.1 upgrades one level of one
group in every execution and upgrading continues until it reaches the highest valued
item of each group. So the analysis of step 2 is like step 1.

Complexity in step 2, () () () ()12131213 2222
2 -+-+-+-= lnmlnlnmlnT (5)

We present an upper bound for the computational complexity of step 3. The situation
will be the worst when an upgrade is done by step 3.1 and it is followed by all
possible down grades by step 3.2 (called from step 3.3). Then it jumps to step 2 to do
all possible (n-1)l upgrades before going to step 3 again.
Upper bounds of the computational complexity by one upgrade in step 3.1 and all
downgrades in step 3.2 are () ()141 +·- mln and () () (){ }mnlmln 21541 +-·+·-
respectively.

Upper bound in step 3, () () () ()291771 2233
3 +-++-= mlnmlnT (6)

Steps 1and 2 share the job of upgrading. So the combined worst case complexity will

be expressed by (5) i.e., ()()22 1-lmnO . Step 3 is executed when step 2 fails to

upgrade the solution. The available resource is very small in this step compared to
step 2. We expect that this step require less iteration than the previous steps and we
can improve the solution with less effort. This is analogous to the hill climbing
approach in a plateau, for classical AI problems [14]. Please refer to [16] for a
detailed analysis.

664 M. Akbar et al.

4 Experimental Results

4.1 Test Pattern Generation

The knapsack problem has been initialized by the following pseudo random numbers:
rijk = kth weight of jth item of ith group = random(Rc). Value per unit resource pk =
random (Pc). Value for each item)(random c

k
kijkij Vprv += å . Here, Rc, Pc and Vc are

the upper bound of any kind of resource requirement, unit price of any resource and
the extra value of an item after its consumed resource price. The value of each item is
not directly proportional to the resource consumption. The function random(i) gives
an integer from 0 to (i-1), following the uniform distribution.
The total constraint for kth resource type Rk = Rc· n· 0.5, where n = number of groups.
If we want to generate a problem for which the solution is known, the following
reinitializations have to be done.
ri = Selected item of ith group = random(Ci), Ci= number of items in ith group.

å=
i

kik i
rR r , i.e., exactly equal to the sum of the resources of the selected items.

The values associated with the selected items are å +·=
k

ckkii Vprv
ii rr .

This initialization ensures maximum value per unit resource for the selected items.
Furthermore the total resource constraint is exactly the same as the aggregate of
selected item resources. Hence there is no chance of selecting other items for
maximization of total value.

4.2 Test Results

We implemented BBLP, Moser’s heuristic, M-HEU and I-HEU for solving MMKP,
using the C programming language. We tested the programs in a Pentium dual
processor 200 MHZ PC with 32 MB RAM running Linux OS (RedHat Package 5.0).

Table 1 shows a comparison among BBLP, Moser’s heuristic and our M-HEU. Here,
10 sets of data have been generated randomly for each of the parameters n, l and m.
We used the constants Rc=10, Pc=10 and Vc=20 for generation of test cases. Data is
not initialized for a predefined maximum total value for the selected items. The
column BBLP gives the average value earned from BBLP. The columns Moser and
M-HEU give the average standardized value earned in those heuristics with respect to

exact solution, where solutions were found. The column hmb ,, shows the number of
data sets where BBLP, Moser and M-HEU fail to find the solution. We find that
Moser’s algorithm cannot always find a feasible solution when there is a solution
found by M-HEU. In Table 1 row 1, 2, 3 and 7 shows that Moser’s method failed to
find a solution when the algorithms could. m¶ and h¶ are the standard deviation of

standardized total value achieved in the 10 sets of data, given to indicate stability. The
main observation from this table is the time requirement of the heuristic solutions
compared with BBLP. This time requirement of BBLP increases dramatically with

665Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem

the size of the MMKP, because of the exponential computational complexity of
BBLP.

It is impractical to test the performance of BBLP for larger MMKP. In order to
determine the percentage of optimality (standardized value earned with respect to
BBLP) achieved by the heuristics we used the technique described in the last
subsection “Test Pattern Generation”. Now if we look at table 1 and 2 we find that our
proposed M-HEU always performs better than Moser’s heuristic in finding feasible
solutions, and in achieving optimality. From table 2 it is also observed that M-HEU
performs better in terms of time requirement for larger problem sets. We can also
conclude that the stability of the solution performance is almost the same in both the
cases.

Table 3 shows the comparative performances of I-HEU and M-HEU for different
batch sizes. Each batch contains a particular number of groups. For each set of
parameters the program starts with no groups and continues until the number of
groups reaches 100, after the arrival of several batches. The result from I-HEU is used
to solve the MMKP for the next batch. We run M-HEU and I-HEU separately and the
average time requirements per batch are shown in the table. The columns headed by

mh and ih show the number of cases where M-HEU and I-HEU could not find

feasible solutions respectively. The column I-HEU/M-HEU gives the ratio of total
values achieved by two heuristics. We find that the performances of I-HEU and M-
HEU are almost the same in achieving optimal solutions. This means the incremental
approach in computation does not degrade the solution quality and we get better
computational speed as observed from the test data. The main reason for the
difference in solution quality is different starting points. M-HEU starts from scratch
whereas I-HEU starts from an almost-done solution. That is why we are not getting
the same result although we are doing the same thing in step 2 and step 3 of the
algorithms.

Table 1. Comparison among BBLP, Moser’s Heuristic and HEU

row
no.

n l m BBLP Moser M-
HEU

tBBLP

(ms)
tMoser

(ms)
tM-HEU

(ms)
hmb ,, m¶ h¶

1 5 5 5 621.60 0.94 0.97 49 0.57 0.53 0 1 0 0.039 0.032
2 7 5 5 946.10 0.93 0.95 400 1.09 1.06 0 1 0 0.010 0.021
3 7 7 5 964.20 0.93 0.96 1161 2.02 1.88 0 1 0 0.031 0.021
4 9 5 5 1163.40 0.95 0.97 1328 1.49 1.70 0 0 0 0.013 0.016
5 9 7 5 1110.20 0.92 0.96 8298 3.47 2.89 0 0 0 0.029 0.016
6 9 9 5 1135.00 0.93 0.95 13884 5.52 4.19 0 0 0 0.011 0.025
7 11 5 5 1341.10 0.93 0.96 4013 2.37 2.49 0 2 0 0.023 0.014
8 11 7 5 1431.20 0.94 0.96 15436 4.89 4.03 0 0 0 0.013 0.017
9 11 9 5 1394.10 0.93 0.96 38309 8.46 6.37 0 0 0 0.018 0.021
10 13 5 5 1648.50 0.94 0.96 12619 3.32 3.62 0 0 0 0.016 0.011
11 13 7 5 1545.30 0.94 0.95 51466 7.04 5.77 0 0 0 0.013 0.016
12 13 9 5 1387.40 0.93 0.95 55429 10.46 8.02 0 0 0 0.018 0.020
13 15 5 5 1803.10 0.94 0.97 39225 3.99 4.47 0 0 0 0.021 0.016
14 15 7 5 2007.30 0.94 0.95 84015 8.42 7.59 0 0 0 0.007 0.015
15 15 9 5 1766.60 0.93 0.95 139150 14.08 11.21 0 0 0 0.020 0.012
16 17 5 5 1995.40 0.93 0.97 49175 5.27 5.79 0 0 0 0.009 0.010
17 17 7 5 2148.90 0.93 0.95 107793 10.89 9.60 0 0 0 0.018 0.013
18 17 9 5 1811.00 0.93 0.96 199418 17.69 14.46 0 0 0 0.012 0.012
19 19 5 5 2218.50 0.94 0.96 75893 6.41 7.22 0 0 0 0.016 0.008
20 19 7 5 2104.40 0.93 0.96 124633 12.89 11.63 0 0 0 0.009 0.006
21 19 9 5 1880.60 0.92 0.96 270580 21.33 19.15 0 0 0 0.025 0.010
22 21 5 5 2578.50 0.95 0.96 64656 7.47 8.19 0 0 0 0.011 0.019

666 M. Akbar et al.

row
no.

n l m BBLP Moser M-
HEU

tBBLP

(ms)
tMoser

(ms)
tM-HEU

(ms)
hmb ,, m¶ h¶

23 21 7 5 2174.60 0.93 0.96 114337 16.28 15.39 0 0 0 0.015 0.016
24 21 9 5 2791.50 0.94 0.95 463615 27.67 22.33 0 0 0 0.010 0.009

Table 2. Comparison between Moser’s Heuristic and M-HEU

n l m m h Max value Moser M-
HEU

tMoser

(ms)
tHEU

(ms)
m¶ h¶

100 5 5 0 0 11574.9 0.94 0.96 137.4 134.6 0.0165 0.0077
100 15 5 0 0 9925.1 0.92 0.95 1410.4 806.0 0.0211 0.0133
100 25 5 0 0 10773.5 0.93 0.96 4002.5 1798.2 0.0121 0.0112
100 5 15 2 0 34942.6 0.94 0.95 263.2 248.4 0.0118 0.0095
100 15 15 0 0 34673.2 0.93 0.95 2859.2 1686.2 0.0078 0.0092
100 25 15 0 0 34533.5 0.93 0.95 8705.6 3488.7 0.0099 0.0093
100 5 25 9 0 59607.2 0.94 0.95 325.1 331.0 - 0.0035
100 15 25 1 0 59467.8 0.92 0.93 5026.2 2688.3 0.0101 0.0082
100 25 25 0 0 57338.3 0.92 0.94 14922.8 5715.8 0.0132 0.0083
200 5 5 0 0 22587.8 0.94 0.96 539.2 527.4 0.0104 0.0103
200 15 5 0 0 22360.8 0.94 0.96 5625.3 3404.3 0.0122 0.0095
200 25 5 0 0 22979.8 0.93 0.96 17643.3 8794.0 0.0172 0.0128
200 5 15 1 0 74289.9 0.94 0.95 1123.8 1192.4 0.0058 0.0091
200 15 15 0 0 71805.7 0.94 0.95 13901.0 7858.2 0.0080 0.0075
200 25 15 0 0 70007.3 0.94 0.95 37617.8 16023.4 0.0109 0.0081
200 5 25 6 0 113000.5 0.93 0.95 1747.3 1793.8 0.0069 0.0068
200 15 25 0 0 122391.5 0.93 0.94 22427.8 11907.6 0.0043 0.0075
200 25 25 0 0 116578.0 0.93 0.95 60908.8 23828.6 0.0067 0.0087
300 5 5 0 0 31790.7 0.94 0.95 1198.9 1162.5 0.0171 0.0103
300 15 5 0 0 31687.1 0.93 0.95 14641.0 7853.2 0.0221 0.0104
300 25 5 0 0 31908.5 0.93 0.96 43271.1 16561.2 0.0213 0.0091
300 5 15 0 0 102715.7 0.94 0.95 2981.1 2926.5 0.0048 0.0078
300 15 15 0 0 98948.5 0.93 0.95 31634.6 17635.6 0.0065 0.0081
300 25 15 0 0 97911.6 0.93 0.94 86546.2 36148.7 0.0075 0.0082
300 5 25 0 0 177995.2 0.94 0.96 5183.2 4475.2 0.0078 0.0054
300 15 25 0 0 167864.3 0.93 0.95 51186.4 26481.2 0.0089 0.0069
300 25 25 0 0 169079.8 0.93 0.95 132720.0 53770.6 0.0065 0.0072

Table 3. Comparison of I- HEU and M-HEU

Ba
tch
Si
ze

l m I-
HEU/
M-
HEU

tM-HEU tI-

HEU
mh ih

1 5 5 1.001 44.2 2.4 1 2
1 10 5 0.998 118.1 7.4 0 0
1 15 5 0.999 319.2 7.7 0 0
1 5 10 1.001 90.7 5.1 2 2
1 10 10 1.003 216.5 13.3 0 0
1 15 10 1.004 436.6 19.1 0 0
1 5 15 1.002 81.3 7.5 2 2
1 10 15 1.002 271.2 21.4 1 1
1 15 15 1.000 688.3 27.4 2 2
6 5 5 0.995 48.9 4.2 0 0
6 10 5 1.000 130.3 7.2 0 0
6 15 5 0.999 222.0 11.5 0 0
6 5 10 0.995 74.4 8.1 0 0
6 10 10 0.998 199.8 13.2 0 0

Ba
tch
Si
ze

l m I-
HEU/
M-
HEU

tM-HEU tI-

HEU
mh ih

6 15 10 1.000 300.5 22.4 0 0
6 5 15 0.991 84.1 16.9 0 0
6 10 15 0.995 301.3 17.4 0 1
6 15 15 1.001 500.5 30.7 0 0
11 5 5 0.997 61.3 6.5 0 0
11 10 5 1.001 154.8 15.4 0 0
11 15 5 1.003 248.4 36.4 0 0
11 5 10 1.010 88.5 17.8 0 0
11 10 10 0.997 272.5 34.8 0 0
11 15 10 0.988 507.4 51.9 0 0
11 5 15 0.992 143.6 18.7 0 0
11 10 15 1.003 364.4 36.6 0 0
11 15 15 1.003 594.6 71.7 0 0

5 Concluding Remarks

The new heuristics M-HEU and I-HEU perform better than other algorithms
considered here. M-HEU is applicable to real time applications like admission control
and QoS adaptation in multimedia systems. We include a dummy QoS level with null
resource requirement and zero revenue, which is therefore lower-valued than all other

667Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem

QoS levels. Now selection of that null QoS level by M-HEU or I-HEU indicates
rejection, comprising effect an admission control for the underlying system. On the
other hand, the dummy QoS level is always feasible because it does not take any
resource. So, there will be no problem regarding infeasible solution in this practical
problem. Due to the quadratic complexity we can not claim too much about M-HEU’s
scalability property. However, I-HEU appears to be very effective indeed, as it offers
almost the same result with much less time requirement. It therefore could be used
with improved performance in a multimedia server system with thousands of admitted
sessions. The QoS manager can execute I-HEU once per minute as some sessions are
dropped and some new ones seek admission. M-HEU could be applied occasionally,
e.g., once per hour for further improvement of the solution.

Only the worst case analysis of M-HEU and I-HEU has been presented here. The
average case analysis of the algorithms is a good research topic for future work. The
question of distributed algorithms for solving the MMKP is also an interesting
unsolved problem. Parallel and distributed versions of MMKP with better
computational complexity can improve the scalability and fault tolerance of adaptive
multimedia.

References

1. R. Armstrong, D. Kung, P. Sinha and A. Zoltners. A Computational Study of Multiple Choice
Knapsack Algorithm. ACM Transaction on Mathematical Software, 9:184-198 (1983).

2. P. Koleser, A Branch and Bound Algorithm for Knapsack Problem. Management Science, 13:723-735
(1967).

3. K. Dudziniski and W. Walukiewicz, A Fast Algorithm for the Linear Multiple Choice Knapsack
Problem. Operation Research Letters, 3:205-209 (1984).

4. S. Khan. Quality Adaptation in a Multi-Session Adaptive Multimedia System: Model and
Architecture. PhD thesis, Department of Electrical and Computer Engineering, University of Victoria
(1998).

5. S. Khan., K. F. Li and E.G. Manning. The Utility Model for Adaptive Multimedia System. In
International Workshop on Multimedia Modeling, pages 111-126 (1997).

6. M. Magazine, G. Nemhauser and L. Trotter. When the Greedy Solution Solves a Class of Knapsack
Problem. Operations Research, 23:207-217 (1975)

7. M. Magazine and O. Oguz. A Heuristic Algorithm for Multidimensional Zero-One Knapsack
Problem. European Journal of Operational Research, 16(3):319-326 (1984).

8. S. Martello and P. Toth. Algorithms for Knapsack Problems. Annals of Discrete Mathematics, 31:70-
79 (1987).

9. M. Moser, D. P. Jokanovic and N. Shiratori. An Algorithm for the Multidimensional Multiple-Choice
Knapsack Problem. IEICE Transactions on Fundamentals of Electronics, 80(3):582-589 (1997).

10. R. Nauss. The 0-1 Knapsack Problem with Multiple Choice Constraints. European Journal of
Operation Research, 2:125-131(1978).

11. W.H. Press, S.A. Teukolsky, W. T. Vetterling and B.P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, Cambridge, UK, second edition (1992).

12. W. Shih. A branch and Bound Method for Multiconstraint Knapsack Problem. Journal of the
Operational Research Society, 30:369-378 (1979).

13. Y. Toyoda. A Simplified Algorithm for Obtaining Approximate Solution to Zero-one Programming
Problems. Management Science, 21:1417-1427 (1975)

14. G. F. Luger and W. A. Stubblefield. Artificial Intelligence, Structures and Strategies for Complex
Problem Solving, Second edition, The Benjamin/Cummings Publishing Company, Inc., 1993.

15. R. K. Watson. Applying the Utility Model to IP Networks: Optimal Admission & Upgrade of Service
Level Agreements. MASc Thesis, Dept of ECE, University of Victoria, 2001, to appear.

16. M. Akbar, E.G. Manning, G. C. Shoja, S. Khan, “Heuristics for Solving the Multiple-Choice Multi-
Dimension Knapsack Problem”, Technical Report DCS-265-1R, Dept. of CS, UVic, March 2001.

668 M. Akbar et al.

	1 Introduction
	2 Related Work
	3 Proposed Heuristic Algorithm for MMKP
	3.1 Modified HEU (M-HEU)
	3.2 Incremental Solution of the MMKP (I-HEU)
	3.3 Analysis of the Algorithm

	4 Experimental Results
	4.1 Test Pattern Generation
	4.2 Test Results

	5 Concluding Remarks
	References

