
Performance Optimization for Large Scale
Computing: The Scalable VAMPIR Approach

Holger Brunst1, Manuela Winkler1, Wolfgang E. Nagel1, and
Hans-Christian Hoppe2

1 Center for High Performance Computing
Dresden University of Technology

D-01062 Dresden, Germany
2 PALLAS GmbH

Hermühlheimer Str. 10
D-50321 Brühl, Germany

{brunst,nagel,winkler}@zhr.tu-dresden.de,
hch@pallas.com

Abstract. Performance optimization remains one of the key issues in
parallel computing. Many parallel applications do not benefit from the
continually increasing peak performance of todays massively parallel
computers, mainly because they have not been designed to operate ef-
ficiently on the 1000s of processors of todays top of the range systems.
Conventional performance analysis is typically restricted to accumulated
data on such large systems, severely limiting its use when dealing with
real-world performance bottlenecks. Event based performance analysis
can give the detailed insight required, but has to deal with extreme
amounts of data, severely limiting its scalability. In this paper, we present
an approach for scalable event-driven performance analysis that com-
bines proven tool technology with novel concepts for hierarchical data
layout and visualization. This evolutionary approach is being validated
by implementing extensions to the performance analysis tool Vampir.
Keywords: performance visualization, application tuning, massively
parallel programming, scalability, message passing, multi-threading.

1 Introduction

Todays microprocessor technology provides powerful basic components normally
targeted at the workstation market. Theoretically, this single processor technol-
ogy enables an enormous peak performance when joined to a multiprocessor
system consisting of 5000 or more processors. The multiplied peak performance
gives the impression to most people that performance – and moreover perfor-
mance optimization – is no longer an important issue. This assumption contra-
dicts reality [12,20] when dealing with parallel applications. Only a few highly
specialized and optimized scientific programs scale well on parallel machines that
provide a couple of thousands processors. In order to widen the range of appli-
cations that benefit from such powerful computational resources, performance

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 751–760, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



752 H. Brunst et al.

analysis and optimization is an essential. The situation is such that performance
analysis and optimization for large scale computing itself poses crucial difficul-
ties. In the following we will present an analysis/optimization approach that
combines existing tool technology with new hierarchical concepts. Starting with
a brief summary of evolving computer architectures and related work, we will
present the concepts and a prototyped tool extension of our scalable performance
analysis approach.

2 Evolving Architectures

In the near future, parallel computers with a shared memory interface and up
to 32 or more CPU nodes (SMP Systems) are expected to become the standard
system for scientific numerical simulation as well as for industrial environments.
In contrast to the homogeneous MPP systems that were more or less exclusively
designed and manufactured for the scientific community, SMP systems mostly
offer an excellent price/performance ratio as they are typically manufactured
from standard components off the shelf (COTS). The comparably low price also
makes SMP systems affordable for commercial applications and thus widens the
community of parallel application developers needing tool support.

In cases where outstanding computational performance is needed, SMP sys-
tems can be coupled to clusters interconnected by a dedicated high performance
network. Projects like ASCI [1,3,4] funded by the Department of Energy or the
LINUX based Beowulf [2,19] show that the coupling of relatively small SMP
systems to a huge parallel computer consisting of approximately 10000 CPUs is
feasible with current hardware technology. On the other hand the system and
application software running on this type of machine still presents a lot of unan-
swered questions. It is a known fact that the different communication layers in
such a hybrid system make it highly complicated to develop parallel applications
performing well. Within this scope, scalability is one of the key issues.

Dealing with scalability problems of parallel applications in most cases re-
quires performance analysis and optimization technology that is capable of giving
detailed insight into an application’s runtime behavior. Accumulative trace data
analysis cannot fulfill this requirement as it typically does not explain the cause
of performance bottlenecks in detail. We experienced that program event tracing
is required for the location and solution of the majority of program scalability
problems. Being aware of this implies that scalability also needs to be intro-
duced into event based performance analysis and optimization tools as tracing
the behavior of 1000-10000 processing entities generates an enormous amount of
performance data. Today, the optimization tools are quite limited with respect
to the number of processing entities and the amount of trace data that can be
handled efficiently. The next section will give a brief summary on the current
state of the art of performance tool development and its limits in order to pro-
vide a better understanding of our activities related to large scale performance
analysis.



Performance Optimization for Large Scale Computing 753

3 Current Analysis / Optimization Tools
Large machines with more than 1000 processing entities produce an enormous
amount of trace data during a tracing session. Finding performance bottlenecks
and their origin requires appropriate tools that can handle these GBytes of
information efficiently. This implies data reduction, selection, archiving, and vi-
sualization on a large scale. Most of todays tools [6,22] cannot yet fulfill this
task. We will now classify todays tools regarding their task, capabilities, and
drawbacks.

3.1 Tools for Accumulated Data Analysis

This type of tool lists measures - typically in a long table - like summarized
function dwell, communication rates, performance registers, etc. Representatives
of this category are prof, gprof, iostat, vmstat known from the UNIX world. This
type of data presentation is disadvantageous when dealing with large, complex,
parallel applications. Nevertheless, it can help to identify a general performance
problem. Once detected, more complex tools are needed to find out what’s going
on ‘inside’ the application.

Based on the same information acquisition methods as the text based tools,
tools like Xprofiler [23] from IBM, APPRENTICE [8] from Cray Research or
Speedshop [21] from SGI have standard spreadsheet constructs to graphically
visualize accumulated information. Although this allows for a quicker overview
of the total application’s behavior, the identification of a problem’s cause remains
unresolved in most cases.

3.2 Tools for Event Trace Analysis

The tools that can directly handle program traces are typically capable of show-
ing accumulated performance measures in all sorts of diagrams for arbitrary time
intervals of a program run. This is already a major difference to the above men-
tioned tools which typically only show a fixed time interval which in most cases is
the overall program duration. In addition to this, they offer a detailed insight into
a program’s runtime behavior by means of so-called timeline diagrams. These
diagrams show the parallel program’s states for an arbitrary period of time. Per-
formance problems that are related to imbalanced code or bad synchronization
can easily be detected with the latter as they cause irregular patterns. When
it comes to performance bottlenecks caused by bad cache access or bad usage
of the floating point units, the timelines are less useful. Similar performance
monitors can be found in almost every CPU now, and would be very helpful
when combined with these CPU timeline diagrams. Representatives of this tool
category are Jumpshot [13], Vampir [17], and Xpvm [24].

4 New Scalability Issues

In the scope of ASCI, detailed program analysis over a long period of time (not
just a few seconds as is possible today) has been identified as an important



754 H. Brunst et al.

requirement. Independently of the method of data acquisition, this implies an
enormous amount of data to be generated, archived, edited and analyzed. The
data extent is expected to be more than one TByte for a moderate size (1000
CPUs, 1 hour runtime) program run, where 0.5 MByte/s trace data per CPU
is a rule of thumb observed in our daily work if pretty much every function
call is traced. Obviously, this amount of data is far too large to be handled by
an analysis sub-system significantly smaller than the parallel master platform.
Dynamic instrumentation as possible with DYNINST [7], which was developed
in the scope of the Paradyn [16] project, connected to a visualization tool would
allow to deselect uninteresting code parts during runtime and thereby reduce
the trace data to a moderate size of 10-100 GByte/h.

The hierarchical design of large scale parallel systems will have an impact
on the way this data is stored. Nobody would really expect a single trace file as
the outcome of a one hour tracing session on 1000 CPUs. Distributed files each
representing a single CPU or a cluster of CPUs are likely to be used as they
allow for best distributed I/O performance. Efficient access to these files forms
the basis of our work and will be discussed in the following.

Fig. 1. A Scalable Optimization Tool Layout

4.1 Distributed Trace Data Preparation

The scalability requirements that arouse from the enormous amount of trace
data to be archived, synchronized, edited, visualized and analyzed require con-
siderable effort and time when incorporated into a fully new tool. As for smaller
systems there are already a couple of good tools available on the market; we



Performance Optimization for Large Scale Computing 755

recommend a parallel data layer extension that acts in between the trace data
base and the analysis tool. This data layer is responsible for all time consuming
operations like for example:

– post-mortem synchronization of asynchronous trace data
– creation of statistics
– filtering of certain events, messages, CPUs, clusters
– summarizing the event history for long time periods

Outsourcing these activities from the visualization tool (which is typically a
sequential program) allows for fast trace data access with limited changes to the
user interface of the visualization tool. Our major goal was to keep the existing
interface constant and to add scalability functionality in a natural way. Figure
1 illustrates the structure of this approach for the performance analysis tool
Vampir.

The trace data can be distributed among several files, each one storing a
‘frame’ of the execution data as pioneered by jumpshot [13]. Frames can corre-
spond to a single CPU, a cluster of CPUs, a part of the execution or a particular
level of detail in the hierarchy (see 4.2). The frames belonging to a single ex-
ecution are tied together by means of an index file. In addition to the frame
references, the index file contains statistics for each frame and a ‘performance
thumbnail’ which summarizes the performance data over time.

The analysis tool reads the index file first, and displays the statistics and the
rough performance thumbnail for each frame. The user can then choose a frame
to look at in more detail, and the frame file will be automatically located, loaded
and displayed. Navigation across frame boundaries will be transparent.

4.2 Hierarchical Visualization

When it comes to visualization of trace data, dealing with 1000-10000 CPUs
poses additional challenges. The limited space and resolution of a computer
display allows the visualization of at most 200-300 processing entities at any
one time. Acting beyond this limit seems to be useless especially when scrolling
facilities are involved, as users become confused by too much data. Therefore,
we propose a hierarchical approach where, based on the distributed system’s
architecture, the user can navigate through the trace data on different levels
of abstraction. This works for both event trace oriented displays (timelines)
and statistic displays for accumulated data. The hierarchy in figure 2a allows
the visualization of at least 10000 processing entities where a maximum of 200
independent objects need ever be drawn simultaneously on the same display.
This prediction is based on a hypothetical cluster consisting of 64 SMP nodes
with 200 processes each (and no threads). As our model provides 3 layers which
can each hold at maximum 200 objects, almost any cluster configuration can be
mapped in an appropriate way.



756 H. Brunst et al.

Cluster

Node

Process

Node 1

Node m Process 1

Process n Thread 1

Thread o

Node i

Process j

Thread k
Thread

MPI
Calculation

1
2
3

0.0 

32.0 M

64.0 M

96.0 M

128.0 M

160.0 M

192.0 M

INSTR

0.15 s0.1 s50.0 ms

bla.vpt: Timeline Process 0

(a) Access Hierarchy

OpenMP Node 1

Memory

CPU 1

CPU n

MPI

OpenMP Node 2

Memory

CPU 1

CPU n

OpenMP Node m

Memory

CPU 1

CPU n

(b) SMP Cluster with MPI/OpenMP

Fig. 2. Hierarchical View on Event Trace Data

4.3 Performance Monitors

Current processor architectures usually offer performance monitor functionality,
mostly in the form of special registers that contain various performance metrics
like the number of floating-point operations, cash misses etc. The use of these
registers is limited because there is no relation to the program structure: an
application programmer typically does not know which parts of the application
actually cause bad cache behavior. To help here, the use of profiling techniques is
necessary: cyclic sampling and association of the sampled values to code locations
(à la prof) or combination of sampling with subroutine entry/exit events (à
la gprof) will provide the insight into which parts of a program need further
optimization.

For the optimization of large scale applications, performance monitors gain
additional significance. As stated above, dealing with large amounts of perfor-
mance data requires multiple abstraction layers. While the lower layers are ex-
pected to provide direct access to the event data by means of standard timeline
and statistic views, the upper layers must provide aggregated event information.
The aggregation needs to be done in a way that provides clues to performance
bottlenecks caused in lower layers. Measures like cache performance, floating
point performance, communication volume, etc. turned out to have good sum-
marizing qualities with respect to activities on lower layers. We suggest intro-
ducing a chart display with n graphs representing n (n < 64) nodes as the entry
point to a scalable performance optimization approach.

4.4 Hybrid Programming Paradigms:
MPI + OpenMP

Parallel computers are typically programmed by using a message passing pro-
gramming paradigm (MPI [5,15] PVM [10], etc.) or a shared memory program-
ming paradigm (OpenMP[9,14,18] Multi Threading, etc.). Large machines are
now often realized as clusters of SMPs. The hybrid nature of these systems is



Performance Optimization for Large Scale Computing 757

leading to applications using both paradigms at the same time to gain best per-
formance. Figure 2b illustrates how MPI and OpenMP would cooperate on a
SMP cluster consisting of m nodes with n CPUs each.

So far, most tools support either message passing or shared memory pro-
gramming. For the hybrid programming paradigm, a tool supporting both mod-
els equally well is highly desirable. The combination of well established existing
tools for both realms by means of a common interface can save development
effort and spare the users the inconvenience of learning a completely new tool.
In this spirit, Vampir and the GuideView tool by KAI [11] will be combined
to support analysis of hybrid MPI/OpenMP applications. First results will be
illustrated in the final paper.

Fig. 3. Hierarchical View on 256 CPUs

5 Vampir - Scalability in Practice

The previous section introduced new ideas for performance analysis tools tar-
geted towards the optimization of next generation applications. We already de-
pend on such tools as part of our daily work, which is why we have put quite
some effort into developing a prototype which implements many of the ideas
mentioned above. The prototype is based on Vampir 2.5 [17], which is a com-
mercial tool for performance analysis and visualization accepted in the field.



758 H. Brunst et al.

Based on real applications that were tuned at our center, we will now present
one possible realization of a scalable performance analysis tool.

5.1 Navigation on GBytes of Trace Data

In section 4.2 we introduced the idea of a hierarchical view on event trace data.
The reason for this was the large amount of event trace data generated by a
large scale application running on hundreds of processing nodes over a longer
period of time. Figure 3 illustrates the impact of this approach on trace data
navigation for a test case generated on 256 (16 × 16) processors. The leftmost
window depicts MFLOPS rates on the cluster level1 for a time period of 0.1 s
which was selected via a time based zoom mechanism. From this starting point
we decided to get a closer view on cluster 1 and its processes. A simple mouse
click opens up the window in the middle which depicts the state2 changes for the
processes 0 - 15. Further details to process 0 are available in the bottom right
window of figure 3 which shows a detailed function call stack combined with a
performance monitor showing the instructions per second rate of process 0. This
type of hierarchical trace file navigation permits an intuitive access to trace files
holding data for hundreds of clustered CPUs.

Call Stack

Time Interval

Floating Point Rates

Call Stack Legend

Trace File 

Process Number

Zoom Markers

Effect 1

Effect 2

Iteration 1 Communication Iteration 2

Fig. 4. Performance Monitor Combined with Call Stack

5.2 Finding Hot Spots by Means of Performance Monitors

Performance monitors can be of much use when dealing with performance bottle-
necks of unknown origin. The following example was taken from a performance
1 Cluster 3 - 12 were filtered to adapt to the small figure size in the paper
2 Depending on the type of instrumentation, a state is a certain function or code block



Performance Optimization for Large Scale Computing 759

optimization session, which we recently carried out on one of our customer’s
programs. For some reason, his parallel program started off performing as ex-
pected but suffered a serious performance decrease in its MFLOPS rate after
two seconds.

Figure 4 shows the program’s call stack combined with the MFLOPS rates
for a representative CPU over the time period of 6 seconds with a close-up of
the time interval the program behavior changes. We see two similar program
iterations separated by a communication step. The first one is twice as fast as
the second one. We can also see that the amount of work carried out in both
iterations is identical, as their integral surfaces are the same (effect 1). A third
aspect can be found in the finalizing part (function DIFF2D) of each iteration.
Obviously the major problem resides here, as the second iteration is almost 10
times slower than the first one (effect 2). We eventually discovered that the whole
problem was caused by a simple buffer size limit inside the program which lead
to repeated date re-fetching.

6 Conclusion

This paper has presented concepts for scalable event-based performance analysis
on SMP clusters containing 1000s of processing entities. The key issues are the
distributed storage and handling of event traces, the hierarchical analysis and
visualization of the trace data and the use of performance monitor data to guide
detailed event based analysis. The existing implementation of parts of these
within the Vampir framework has been discussed. Further extensions to Vampir
that are currently being worked on will serve as a proof of concept, demonstrating
the benefits of event based performance analysis to real-world users with large
applications on the upcoming huge SMP systems.

References

[1] Accelerated Strategic Computing Initiative (ASCI).
http://www.llnl.gov/asci.

[2] D. J. Becker, T. Sterling, D. Saverese, J. E. Dorband, U. A. Ranawak, and C. V.
Packer. Beowulf: A Parallel Workstation for Scientific Computation. In Proceed-
ings, International Conference on Parallel Processing, 1995.
http://www.beofulf.org.

[3] Blue Mountain ASCI Machine.
http://w10.lanl.gov/asci/bluemtn/bluemtn.html.

[4] Blue Pacific ASCI Machine.
http://www.llnl.gov/asci/platforms/bluepac.

[5] S. Bova, C. Breshears, H. Gabb, R. Eigenmann, G. Gaertner, B. Kuhn, B. Magro,
and S. Salvini. Parallel programming with message passing and directives. SIAM
News, 11 1999.

[6] S. Browne, J. Dongarra, and K. London. Review of performance analysis tools
for mpi parallel programs.
http://www.cs.utk.edu/˜browne/perftools-review.



760 H. Brunst et al.

[7] B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Technical
report, Computer Science Department, University of Maryland, College Park, MD
20742 USA, 1998.
http://www.cs.umd.edu/projects/dyninstAPI.

[8] Cray Research. Introducing the MPP Apprentice Tool, IN-2511 3.0 edition, 1997.
[9] D. Dent, G. Mozdzynski, D. Salmond, and B. Carruthers. Implementation and

performance of OpenMP in ECWMF’s IFS code. In Proc. of the 5th SGI/CRAY
MPP-Workshop, Bologna, 1999.
http://www.cineca.it/mpp-workshop/abstract/bcarruthers.htm.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. The MIT Press, 1994.
http://www.epm.ornl.gov/pvm.

[11] The GuideView performance analysis tool.
http://www.kai.com.

[12] F. Hoßfeld and W. E. Nagel. Per aspera ad astra: On the way to parallel pro-
cessing. In H.-W. Meuer, editor, Anwendungen, Architekturen, Trends, FOKUS
Praxis Informationen und Kommunikation, volume 13, pages 246–259, Munich,
1995. K.G. Saur.

[13] The Jumpshot performance analysis tool.
http://www-unix.mcs.anl.gov/mpi/mpich.

[14] Lund Institute of Technology. Proceedings of EWOMP’99, 1st European Workshop
on OpenMP, 1999.

[15] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface, August 1997.
http://www.mpi-forum.org/index.html.

[16] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel
Performance Measurement Tools. IEEE Computer, 28(11):37–46, November 1995.
http://www.cs.wisc.edu/˜paradyn.

[17] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR:
Visualization and Analysis of MPI Resources. Supercomputer 63, XII(1):69–80,
January 1996.
http://www.pallas.de/pages/vampir.htm.

[18] Tutorial on OpenMP Parallel Programming, 1998.
http://www.openmp.org.

[19] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the Power
of Parallelism in a Pile-of-PCs. In Proceedings, IEEE Aerospace, 1997.
http://www.beofulf.org.

[20] L. Smarr. Special issue on computational infrastructure: Toward the 21st century.
Comm. ACM, 40(11):28–94, 11 1997.

[21] The Speedshop performance analysis tool.
http://www.sgi.com.

[22] Pointers to tools, modules, APIs and documents related to parallel performance
analysis.
http://www.fz-juelich.de/apart/wp3/modmain.html.

[23] The Xprofiler performance analysis tool.
http://www.ibm.com.

[24] The XPVM performance analysis tool.
http://www.netlib.org/utk/icl/xpvm/xpvm.html.


	Introduction
	Evolving Architectures
	Current Analysis / Optimization Tools
	Tools for Accumulated Data Analysis
	Tools for Event Trace Analysis

	New Scalability Issues
	Distributed Trace Data Preparation
	Hierarchical Visualization
	Performance Monitors
	Hybrid Programming Paradigms:MPI + OpenMP

	Vampir - Scalability in Practice
	Navigation on GBytes of Trace Data
	Finding Hot Spots by Means of Performance Monitors

	Conclusion

