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Abstract. In the beginning of nineties, Hava Siegelmann proposed a new 
computational model, the Artificial Recurrent Neural Network (ARNN), and 
proved that it could perform hypercomputation. She also established the 
equivalence between the ARNN and other analog systems that support 
hypercomputation, launching the foundations of an alternative computational 
theory. In this paper we contribute to this alternative theory by exploring the 
use of formal methods in the verification of temporal properties of ARNNs. 
Based on the work of Bradfield in verification of temporal properties of infinite 
systems, we simplify his tableau system, keeping its expressive power, and 
show that it is suitable to the verification of temporal properties of ARNNs. 

1 Introduction 

During the forties and the beginning of the fifties, the Josiah Macy Jr. Foundation 
patronized an annual scientific meeting that brought together researchers from 
disparate areas such as Biology, Physics, Mathematics and Engineering, to discuss 
possible models of computation machines. They all agreed that a computer should 
resemble the brain. From this principle, two research programs emerged: the first one, 
less known, originated the theory and technology of analog computation; the second 
one, focused on the theory and technology of digital computation. 
In 1943, McCulloch and Pitts presented their most influential paper “A logical 
calculus of the ideas immanent in nervous activity”, in which they introduced the idea 
that processes in the brain can be metaphorically modeled by a finite interconnection 
of logical devices. Although the logical abstraction of McCulloch and Pitts was 
controversial, von Neumann developed this idea towards the design of the digital 
computer and, since then, the digital approach to computation has prevailed.  
Recently, researchers have speculated that although the Turing machine, the 
theoretical model of digital computation, is indeed able to simulate a large class of 
computations, it does not necessarily provide a complete picture of the computations 
possible in nature. This speculation emerged with several proposals of different 
models of computation. In the beginning of nineties, Hava Siegelmann proposes what 



 

 

she called the “Artificial Recurrent Neural Network” (ARNN), an analog model 
capable of performing hypercomputation. By showing that ARNNs were equivalent to 
other analog computational models, also able to perform hypercomputation, 
Siegelmann claims that ARNNs should be taken as the analog computational model. 
Upon this postulate some research has been conducted: foundations [11, 9, 5], 
languages and compilers [6, 10, 7, 8], etc.  
In this paper we will be contributing to this emergent alternative computer science by 
exploring the use of formal methods in the verification of temporal properties of 
ARNNs. More specifically, we will be using “model checking”. “Model checking” is 
a way of certifying the agreement between a specification and a system: a system is 
described as a transition graph and the proof of properties is established by traversing 
parts of the graph. We will extend the work of Bradfield [1, 2, 3] who has developed a 
“mechanism” of “model checking” for infinite systems and analyzed its applicability 
to conventional Petri Nets, by simplifying the “mechanism” and studying its 
applicability to ARNNs. 
In section 2 we will present the language we shall be using to describe properties we 
wish to verify. In section 3, we will present the tableau system and, in section 4, we 
will present the ARNN and the applicability of the tableau system to prove properties 
of ARNNs.  

2 Mu-calculus (Syntax and Semantics) 

Mu-calculus is a temporal logic with vast expressive power – it subsumes several 
standard temporal logics [4]. There are several versions of it in the literature. We shall 
be using the version that Bradfield used in his PhD thesis [1], a version in which the 
indexation of modal operators was enlarged from labels to sets of labels. 
Let us assume two fixed sets: the set of variables V (countably infinite) and the set of 
labels E (finite and non-empty). X, Y and Z will be used to designate variables and, 
a,b will be used to designate labels. 

 
Definition A mu-formula is inductively defined as follows:  
•  X is a mu-formula;  
•  if ϕ1 and ϕ2 are mu-formulas, then (ϕ1 ∧  ϕ2) and (ϕ1 ∨  ϕ2) are mu-formulas;  
•  if ϕ is a mu-formula, then (¬ϕ), ([K]ϕ) and (〈K〉ϕ) are mu-formulas, where K 

stands for a set of labels;  
•  if ϕ is a mu-formula and any free occurrence of X in ϕ is within the scope of an 

even number of negations, then (νX.ϕ) and (µX.ϕ) are mu-formulas. ◊ 
 
Notation To minimize the use of parenthesis, we adopt the following convention of 
precedence (from greater to a smaller precedence): ¬ , the modal operators [K] and 
〈K〉, the logical operators ∧  and ∨ , and, finally, the fix-point operators νX.ϕ and 
µX.ϕ. We also assume that the logical operators associate to the left.  ◊ 
 
Notation We will be using σX.ϕ to denote either of the two fix-point operators.  ◊ 



 

 

 
Mu-formulas are interpreted in models. 
 
Definition A labeled transition system is a triple 〈S, Act, →〉 where:  
•  S is a set whose elements are called states;  
•  Act is a set whose elements are called actions;  
•  → ⊆  S × Act × S is a relation, called the transition relation. ◊ 
 
Definition A model M for the set of mu-formulas is a pair 〈T, I〉 where T = 〈S, E, →〉 
is a labeled transition system, with E as the action set, and I: V→2S, an interpretation 
that assigns a set of states to each variable. ◊ 
 
Definition [1] Let M = 〈T, I〉 be a model for the set of mu-formulas. The denotation 
‖ϕ‖T

I of a mu-formula in a model M is inductively defined as follows: 
•  ‖X‖T

I  = I(X) 
•  ‖¬ϕ‖T

I  = S – ‖ϕ‖T
I  

•  ‖ϕ1 ∧  ϕ2‖T
I  = ‖ϕ1‖T

I  ∩ ‖ϕ2‖T
I   

•  ‖ϕ1 ∨  ϕ2‖T
I  = ‖ϕ1‖T

I  ∪  ‖ϕ2‖T
I  

•  ‖[K]ϕ‖T
I  = { s ∈  S : ∀ s’ ∈  S ∀ a ∈  K (s a →  s’ ⇒ s’ ∈  ‖ϕ‖T

I )} 
•  ‖〈K〉ϕ‖T

I  = { s ∈  S : ∃ s’ ∈  S ∃ a ∈  K (s a →  s’ e s’ ∈  ‖ϕ‖T
I )} 

•  ‖νX.ϕ‖T
I  = ∪ { T ⊆  S : T ⊆  ‖ϕ‖T

I[X:=T] }  
•  ‖µX.ϕ‖T

I  = ∩{ T ⊆  S : ‖ϕ‖T
I[X:=T]  ⊆  T } 

where I[X:=T] agrees with I in every variable except, eventually, in X, being 
I[X:=T](X) = T.  ◊ 
 
Notation We shall be writing ‖ϕ‖I instead of ‖ϕ‖T

I whenever T is irrelevant.  ◊ 
 
The meaning of mu-formulas not involving fix-point operators should be easily 
understandable from this last definition. For the meaning of more complex 
mu-formulas cf. [1, 2]. 

3 The Tableau System 

Bradfield [1] presented a tableau system for proving that a set of states satisfies a 
property described as a mu-formula without determining its full denotation. We shall 
be using an equivalent tableau system in which the unfolding rule can only be applied 
once to each subformula whose external operator is a fix-point operator. This small 
change had already been mentioned by Bradfield [1] and used by him [2] though not 
considering the indexation of modal operators by sets of states. In our opinion, this 
small change simplifies tableaux construction. 



 

 

We shall not present the proofs of correctness and completeness of the tableau 
system, but they are fairly similar to the ones presented by Bradfield [1]. 
Let us assume a fixed model M = 〈T, I〉. We wish to prove that a set of states S 
satisfies a property ϕ, i.e., S ⊆  ‖ϕ‖I. This is only possible, using the tableau system, 
if ϕ is in the positive normal form: it is proven that every mu-formula has an 
equivalent mu-formula, which is in the positive normal form (negations are only 
applied to variables, there are no variables simultaneously free and bounded in the 
formula and the same variable can not be bounded by two fix-point operators). 
A tableau is a proof tree built on sequents of the form S’ |− ϕ’; a sequent represents 
the goal of showing S’ ⊆  ‖ϕ’‖I’. If we wish to prove that S ⊆  ‖ϕ‖I, we start from the 
sequent S |− ϕ and go on applying the rules of the system, that transform goals into 
one or two subgoals, until we reach terminal sequents. Once built the tableau, the root 
sequent goal is proven iff a given success condition is verified.  
 
Definition tableau rules (presented as inverted proof rules): 
 

(and)  
S |− ϕ1 ∧  ϕ2

 S |− ϕ1    S |− ϕ2
   

 

(or)   
S |− ϕ1 ∨  ϕ2

 S1 |− ϕ1    S2 |− ϕ2
   where S = S1∪ S2 

 

(box)        
S |− [K]ϕ
 S' |− ϕ    where S’ = { s’ ∈  S : ∃ s ∈  S ∃ a ∈  K (s a →  s’)} 

 

(diamond) 
S |− 〈K〉ϕ
 S' |− ϕ    where S’ is the range of an application f:S → S 

such that, if f(s) = s’, then ∃ a ∈  K (s a →  s’) 
 

(unfolding) 
S |− σX.ϕ

 S |− ϕ   (weakening) 
S |− ϕ
 S' |− ϕ   where S’ ⊇  S ◊ 

 
These rules, except for the last two, should be, straightforward. To explain the 
unfolding rule, let us suppose that the goal represented by S |− σX.ϕ is S ⊆  ‖σX.ϕ‖I’. 
Then, the goal represented by S |− ϕ should be seen as S ⊆  ‖ϕ‖I’[X:=S]. According to 
the way the semantics is defined, if this latest inclusion is true, then S ⊆  ‖σX.ϕ‖I’ as 
long as σX.ϕ is νX.ϕ. If this is not the case, then something more has to be proven. 
The weakening rule is strictly needed for the completeness of the system. Still, it has 
only to be applied immediately before the unfolding rule. We shall present an 
example of this later, in the next section.  
Given a root sequent, the tableau is built downwards, using tableau rules, until the 
only rule applicable to leaf sequents is the weakening rule (these sequents are called 
terminal nodes).  
 



 

 

Definition Let ϕ be the mu-formula present in the root sequent and n’ = S’ |− ϕ’, a 
terminal node.  
•  If ϕ’ is X and X is free in ϕ, then n’ is called a free terminal. 
•  If ϕ’ is ¬X and X is free in ϕ, then n’ is called a negated terminal. 
•  If ϕ’ is X and X is bounded in ϕ, then n’ is called a σ-terminal. 
•  If ϕ’ is X and there is a subformula µX.ψ of ϕ, then n’ is called a µ-terminal.  
•  If ϕ’ is X and there is a subformula νX.ψ of ϕ, then n’ is called a ν-terminal. ◊ 
 
For a tableau to be successful, every terminal node must be a successful node. 
 
Definition Let n’ = S’ |− X be a σ-terminal. Its companion is the lowest node        
n’’= S’’ |− σX.ϕ above it. ◊ 
 
Definition A terminal node n’ = S’ |− ϕ’ is successful iff: 
•  ϕ’ is ¬X and S’ ∩ I(X) = ∅  or 
•  S’ = ∅  or 
•  n’ is a free terminal and S’ ⊆  I(ϕ’) or 
•  n’ is a ν-terminal with companion n’’ = S’’ |− νX.ϕ’’ and S’ ⊆  S’’ or 
•  n’ is a µ-terminal with companion n’’ = S’’ |− µX.ϕ’’, S’ ⊆  S’’ and n’’ satisfies the 

µ-success condition presented below. ◊ 
 

Definition A path from a state s at a node n to a state s’ at a node n’,                      
s@n . →  s’@n’, is a sequence (s,n) = (s0,n0), (s1,n1), …, (sk,nk) = (s’, n’) of pairs 
(state, node) such that: 
•  ni+1 is a child of ni; 
•  if ni = Si |− ϕi, then si ∈  Si; 
•  if the rule applied to ni is the box or the diamond rule, then ∃ a ∈  K (si a →  si+1), 

otherwise, si+1 é si. ◊ 
 
Definition There is an extended path from a state s at a node n to a state s’ at a node 
n’, s@n : →  s’@n’, if:  
i) s@n . →  s’@n’ or 
ii) there exists a node n’’ = S’’ |− σX.ϕ, companion of k (k≥1) σ-terminal nodes,     

n1, …, nk, and a finite sequence of states, s0, …, sk, such that s@n . →  s0@n’’, 
for each i (0≤i<k), si@n’’ : →  si+1@ni+1, and sk@n’’ : →  s’@n’. ◊ 

 
Definition Let n = S |− σX.ϕ be a companion node. We define the relation ⊐n on the 
elements of S in the following way: s ⊐n s’ iff s@n : →  s’@n’ for some σ-terminal 
n’ = S’ |− X. ◊ 
 
Definition Let n = S |− µX.ϕ be a companion node. n satisfies the µ-success condition 
iff the relation ⊐n is well founded.  ◊ 
 



 

 

We will postpone an example of the use of the tableau system to the next section. 

4 Tableau System for Neural Networks 

The neural network architecture we will be using is the one used by Siegelmann [11] 
to study the computational power of neural networks. Nevertheless, this model is 
pretty similar to other neural network architectures and so the work we will present is 
easily adaptable to those architectures. 
 
Definition An artificial recurrent neural network of n (n ∈  ℕ) neurons and u (u ∈  ℕ) 
input units is a quadruple ℜ n,u = 〈A, B, C, f〉 where: A is a n × n matrix of real 
numbers; B is a n × u matrix of real numbers; C is a n × 1 matrix of real numbers; f is 
an application from ℝ to ℝ. ◊ 

 
Definition The dynamics of an ARNN ℜ n,u = 〈A, B, C, f〉 is given by an application 

F: ℝn
 × {0,1}

u
 → ℝn

 defined in the following way: 

F(x, u) = x+ where, for all i such that 1 ≤ i ≤ n, x i
 +

  = f 








∑
j=1

 n
 aijxj + ∑

j=1

 u
 bijuj + ci  ◊ 

 
The computation of an ARNN is infinite: given an initial state and an infinite 
succession of stimulus to be presented to the input units, the net will be evolving 
through a succession of states infinitely. 
 
Definition Let ℜ n,u = 〈A, B, C, f〉 be an ARNN. An input stream for ℜ n,u is an 

application u: ℕ0 → {0,1}
u
.  ◊ 

 
Definition Let ℜ n,u = 〈A, B, C, f〉 be an ARNN. A computation of ℜ n,u is a triple  

〈xinit, u, x〉 where: xinit is an element of ℝn
, the initial state; u is an input stream for 

ℜ n,u; x is an application from ℕ0 to ℝn
 defined in the following way: x(0) = xinit; for 

all t ≥ 0, x(t+1) = F(x(t), u(t)) ◊ 
 

As we can notice, an ARNN is not a labeled transition system. Nevertheless, its 
behavior can be simulated by a labeled transition system. 
 
Definition Let ℜ n,u be an ARNN. The associated labeled transition system to ℜ n,u is a 
triple Tℜ n,u = 〈S, Act, →〉 where S = ℝn

, Act = {0,1}
u
 and ∀ s, s’ ∈  S ∀ a ∈  Act             

(s a →  s’ iff F(s,a) = s’). ◊ 
 
According to this latest definition, an ARNN and its associated labeled transition 
system evolve in the same way (a stimulus presented to the input units becomes an 
action performed on the associated labeled transition system). Therefore, we will say 



 

 

that a set of states S, of an ARNN ℜ n,u, satisfy a given property ϕ iff  the same set S is 
in the denotation of ϕ, considering Tℜ n,u as the labeled transition system. 

 
We will finish this section with an example. Assume an ARNN with 2 neurons and 1 
input unit defined as follows:  

A = 



-1 1

 1 0 , B = 


1

0 , C = 


0

0  and f is the signal function, i.e., f(x) = 



 
 0     se x ≤ 0
 1     se x > 0

   

Let us prove that, for all states of the ARNN in which both neurons have the same 
activation, there is a computation in which the state (1,0), the state in which the 
neuron 1 has activation 1 and the neuron 2 has activation 0, is visited infinitely often. 
Translating our purpose to the mu-calculus, we wish to prove that the set {(x,x):x∈ ℝ} 
is in the denotation of νY.µX.(P ∨  〈–〉X) ∧  〈–〉Y, assuming {(1,0)} as the 
interpretation for P (we are using 〈–〉 as an abbreviation for 〈{0,1}〉).  
 

__________________________________{(x,x):x∈ ℝ} |− νY.µX.(P ∨  〈–〉X) ∧  〈–〉Y   
               n1 ______________________________________________{(x,x):x∈ ℝ}∪ {(0,1), (1,0)} |− νY.µX.(P ∨  〈–〉X) ∧  〈–〉Y   

                     n2 _____________________________________________{(x,x):x∈ ℝ}∪ {(0,1), (1,0)} |− µX.(P ∨  〈–〉X) ∧  〈–〉Y   

________________________________________{(x,x):x∈ ℝ}∪ {(0,1), (1,0)} |− (P ∨  〈–〉X) ∧  〈–〉Y   

_____________________________________{(x,x):x∈ ℝ}∪ {(0,1), (1,0)} |− P ∨  〈–〉X    _____________________________{(x,x):x∈ ℝ}∪ {(0,1), (1,0)} |− 〈–〉Yn3 
n4{(1,0)} |− P  _________________________{(x,x):x∈ ℝ}∪ {(0,1)}  |−  〈–〉X   n5                       {(0,1), (1,0)} |− Y   n6 
                      n7  {(0,1), (1,0)} |− X 
 
As it can be seen, in this case, it would be impossible to prove what we wanted if the 
weakening rule (the first rule applied) was not available. This rule is strictly essential 
to satisfy the inclusion condition of the sets associated to σ-terminals and its 
companions.  
Before showing that this is a successful tableau, we must present the functions 
implicit in the application of the diamond rule: 
− Let f3 denote the function considered in the application of the diamond rule to n3. 

This function is defined in the following way: for all x ≤ 0, f3(x,x) = (1,0); for all  
x > 0, f3(x,x) = (0,1); f3(0,1) = (1,0), f3(1,0) = (0,1).  

− Let f5 denote the function considered in the application of the diamond rule to n5. 
This function is defined in the following way: for all x ≤ 0, f5(x,x) = (1,0); for all  
x > 0, f5(x,x) = (0,1); f5(0,1) = (1,0). 

Let us prove that the tableau is a successful tableau. n4 and n6 are clearly successful 
terminals: n4 is a successful terminal because {(1,0)} is contained in the interpretation 
of P; n6 is also a successful node because {(0,1), (1,0)} is contained in 
{(x,x):x∈ ℝ}∪ {(0,1), (1,0)}, the set associated to n1, the companion of n6. Finally, n7 
is also a successful terminal since {(0,1), (1,0)} is contained in {(x,x):x∈ ℝ}∪    
{(0,1), (1,0)}, the set associated to n2, the companion of n7, and the relation ⊐n2 is 
well founded: (0,1) ⊐n2 (1,0); for all x ≤ 0 (x,x) ⊐n2 (1,0); for all x > 0 (x,x) ⊐n2 (0,1). 
Since all terminal nodes are successful, the tableau is a successful tableau. 



 

 

5 Conclusions 

We have presented a system for reasoning about ARNNs by adapting standard 
techniques of model-checking whose applicability had only been studied on 
conventional Petri Nets. The system presented is clearly undecidable and so, can not 
be fully automated. Still, if we confine the elements of the matrices to integers, the 
ARNN becomes a finite system and, consequently, the tableau system becomes 
decidable (we have implemented a fully automated tableau system for this subclass of 
ARNNs). Nevertheless, since we are dealing with a local model-checking technique, 
we shall be able to automatically prove properties about ARNNs with an infinite state 
space. How can it be done? We don’t have the answer yet and the work on finite 
ARNNs has not given us much clues. We believe we should recover the work on 
finite ARNNs and try to improve the results obtained. 
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