
Non-symmetric Support Vector Machines

Jianfeng Feng

Sussex University, Brighton BN1 9QH, UK
http://www.cogs.susx.ac.uk/users/jianfeng

Abstract. A novel approach to calculate the generalization error of
the support vector machines and a new support vector machine–non-
symmatic support vector machine–is proposed here. Our results are based
upon the extreme value theory and both the mean and variance of the
generalization error are exactly ontained.

1 Introduction

Multilayer perceptrons, radial-basis function networks and support vector ma-
chines are three approaches widely used in pattern recognition. In comparison
with multilayer perceptrons and radial-basis function networks, the support vec-
tor machine optimizes its margin of separation and ensures the uniqueness of
the final result. It seems support vector machines have become established as a
powerful technique for solving a variety of classification, regression and density
estimation tasks[2]. In practical applications, it is also recently reported that the
SVM outperforms conventional learning algorithms[1]. How much does the SVM
improve a machine’s capability of generalization? There are a few authors [2, 9,
3] who have carried out a detailed analysis on the performance of the SVM. Nev-
ertheless, the exact behaviour of the SVM on generalization remains elusive: all
results obtained up to date are upper bounds of the mean of the generalization
error (see next section for definition).

Here we propose a novel approach in terms of the extremal value theory
[8, 4, 5] to exactly calculate the generalization error of a SVM. Although we
confine ourselves to the case of one dimension, the conclusions obtained are
illuminating. Firstly the mean and variance (or distribution) of the generalization
error are exactly calculated. In the literature, as we mentioned above, only upper
bounds of the mean are estimated. Secondly our approach enables us to go a
step further to compare different learning algorithms. We assert that the support
vector machine does improve the generalization error, both mean and variance,
by a factor of a constant. Thirdly we then further propose a new version of
the SVM, called non-symmetric support vector machine, which could, in some
circumstances, further reduce the mean of the generalization. The basic idea
of the non-symmetric support vector machine is that to employ not only the
support vectors which are the only information used in the SVM, but also the
mean of samples. In fact the advantage of non-symmetric support machine could
be easily understood. The essence of the SVM is to rely only on the set of samples
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which take extremal values, the so-called support vectors. From the statistics of
the extremal values, we know that the disadvantage of such an approach is that
the information contained in most samples (no extremal values) is simply lost and
is bound to be less efficient than an algorithm taking into the lost information.
We refer the reader to [6] for more details.

2 Models

The models we are going to consider are the support vector machine and the
worst learning machine. For the former, the basic assumption is that the learning
is only dependent on the support vectors, and a maximization of the separation
margin is fulfilled. For the later,we assume that after learning, the machine
is only able to correctly recognize learned samples (see Fig. 1). Very different
from most approaches in the literature, where the learning machines with high
dimensional inputs are considered, here we consider only one dimensional case
due to the following reasons. Firstly in the one dimensional case, we are able to
carry out a rigorous calculation of the mean and variance of the generalization
error. Secondly in the one dimensional case, we could fully understand why
and how the support vector machine outperforms the worst learning machine
and gain insights onto how to further improve the generalization capability of a
learning machine (see Discussion).

Let us first introduce the model here. Suppose that the target function is
x = 0, i.e. the correct separation function (target hyperplane, is sign(x). After
learning t examples from A1 = {x(i) > 0, i = 1, · · · , t} and A2 = {y(i) < 0, i =
1, · · · , t}, a new coming signal ξ(t + 1) is sampled from U(0, 1), the uniform
distribution over [0, 1], with probability 1/2 and U(−1, 0) with probability 1/2.
The generalization error is defined by

ε(t) = P (0 ≤ ξ(t+ 1) ≤ x0|Ft)I{x0>0} + P (0 ≥ ξ(t+ 1) ≥ x0|Ft)I{x0<0} (1)

where Ft is the sigma-algebra generated by x(i), y(i), i = 1, · · · , t and IA is the
indication function of the set A, i.e. IA(x) = 1 if x ∈ A and 0 otherwise.

Denote

x(tt) = min{x(i), i = 1, · · · t} y(tt) = max{y(i), i = 1, · · · , t}
for the SVM the separation hyperplane is given by

x0 =
x(tt) + y(tt)

2

for the worst learning machine the separation hyperplane is given by

x0 = x(tt)

In the literature the expectation of ε(t) is called the generalization error. Here
since we are able to calculate not only the mean of ε(t), but also the variance
etc., we prefer to call ε(t) the generalization error, which is a random variable.
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3 Generalization Errors: Symmetric Cases

The basic idea is to apply the extremal value theory in statistics to estimating
the generalization error. To this end, we first introduce a lemma here1.

Lemma 1. Suppose that x(i) ∼ U(0, 1), the uniform distribution over [0, 1], is
identically and independently distributed for i = 1, · · · , t. When t→∞ we have

P (x(tt) ≥ x

t
) = exp(−x), x > 0 (2)

〈xk(tt) exp(−αx(tt))〉 = k!
(α+ 1)k+1tk

, α > 0, k = 1, 2, · · · , (3)

where 〈·〉 denotes the expectation. In other words, the distribution density of x(tt)
is h(x) = t exp(−tx).

Proof. From example 1.7.9 in[8] we know that P (η(tt) ≤ 1 − x/t) = exp(−x)
for η(tt) representing the largest maximum of x(i). Then Eq. (2) is a simple
consequence of the symmetry between 1 and 0 of the uniform distribution. In
terms of Eq. (2) we have

〈xk(tt)) exp(−αx(tt))〉 =
∫
xkt exp(−(α+ 1)tx)dx =

k!
(α+ 1)k+1tk

Lemma 1 simply tells us the asymptotic distribution of x(tt) when t is large
enough. Let α = 0 in Eq. (3), we see that 〈xk(tt)〉 conveges to zero with a
rate of 1/tk. For a given random sequence x(i), we could calculate its exact
distribution rather than its asymptotic distribution, which will provide us with
further information on its behaviour with small samples[7].

From now on we assume that both x(i) and y(i) are uniformly distributed
random variables and will report further work in [7]. The generalization error of
the SVM defined in the previous section can now be rewritten as a function of
extremal values

ε(t) =
1
2
P (0 ≤ ξ(t+ 1) ≤ x(tt) + y(tt)

2
I{x(tt)+y(tt)>0}|Ft)

+
1
2
P (0 > ξ(t+ 1) ≥ x(tt) + y(tt)

2
I{x(tt)+y(tt)<0}|Ft)

=
1
2
x(tt) + y(tt)

2
I{x(tt)+y(tt)>0} − 1

2
x(tt) + y(tt)

2
I{x(tt)+y(tt)<0}

Here we have used the fact that x(i) is uniformly distributed. Due to the sym-
metry between x(i) and y(i) we further conclude that

〈εk(t)〉 = 〈[x(tt)
2

I{x(tt)+y(tt)>0} +
y(tt)
2

I{x(tt)+y(tt)>0}]k〉 k = 1, 2, · · · (4)

1 In the sequence, we take the convention that all terms of order O(exp(−t)) in an
equality are omitted
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We first consider the mean of the generalization error by calculating the mean
of each term in the equation above. The first term is

〈x(tt)
2

I{x(tt)+y(tt)>0}〉 = 〈x(tt)2

∫ 0

−x(tt)
t exp(ty)dy〉

= 〈x(tt)
2

(1− exp(−tx(tt)))〉
= [

1
2t
− 1

8t
] =

3
8t

The second term turns out to be

〈y(tt)
2

I{x(tt)+y(tt)>0}〉 = 〈y(tt)2

∫ 1

−y(tt)
t exp(−tx)dx〉

= 〈y(tt)
2

[exp(ty(tt))− exp(−t)]〉
= −[ 1

8t
− 1

2t
exp(−t)]

Therefore we have the following conclusion.

Theorem 1. The mean of the generalization error of the support vector machine
is

〈ε(t)〉 = 1
4t

(5)

Although the proof of Theorem 1 is almost straightforward, it is very inter-
esting to see the implications of its conclusion. In the literature, different upper
bounds for the mean of the generalization error of the support vector machine
have been found (see for example [9]). However, it seems the result of Theorem 1
is the first rigorous, and exact value of the mean. It is generally believed that the
generalization error of the support vector machine is improved, in comparison
with other conventional learning rules. How much does it exactly improve? We
answer it in the following theorem.

Theorem 2. For the worst learning machine, the mean of the generalization
error is given by

〈ε(t)〉 = 1
2t

Proof. Now the generalization error is simply given by

ε(t) = x(tt)/2

which, combining with Lemma 1, implies the conclusion of the theorem.
It is well known in the literature that the mean of the generalization error of

a learning machine decays at a rate of O(1/t), independent of the distribution of
input samples. The mean of the generalization error of both the support vector
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machine and the worst learning machine is of order 1/t, as we could expect. The
illuminating fact here is that the support vector machine improves the mean
of the generalization error by a factor of 1/2, in comparison with the worst
learning machine. We want to emphasize here that the conclusion in Theorem
2 is independent of distributions, i.e. universally for the worst learning machine
its generalization error is 1/t (see Lemma 3 in [5]for a proof). Nevertheless,
for the support vector machine, the conclusions in Theorem 1 are obtained in
terms of the assumptions of the uniform distribution of input samples. For any
given distribution, we could calculate, as we developed in Theorem 1, its mean
generalization error. The key and most challenging question is that whether the
obtained conclusion is univeral, i.e. independent of input distribution, or not. A
detailed analysis is outside the scope of the present letter and we will report it
in [7].

In the literature the generalization error of the support vector machine is
expressed in terms of the separation margin. We could easily do it here as well.
Denote d = x(tt)− y(tt) as the separation margin.

Theorem 3. The mean of the generalization error of the support vector machine
is

〈ε(t)〉 = 〈d〉
8

(6)

Proof. Since 〈x(tt)〉 = 1/t, the conclusion follows.
So far we have known that in terms of the mean of the generalization error,

the support vector machine improves the performance. How is the variance of
the generalization error of the support vector machine, in comparison with con-
ventional learning rules? To the best of our knowledge, there is no report in the
literature to successfully calculate the variance of the generalization error. Due
to Lemma 1, we have the following conclusions.

Theorem 4. For the worst learning machine its variance of the generalization
error is

var(ε(t)) =
1
4t2

For the support vector machine we have

var(ε(t)) =
1

16t2

Proof. We only need to calculate 〈ε2(t)〉 of the support vector machine. For Eq.
(4) we have

〈x2(tt)I{x(tt)+y(tt)>0}〉 = 〈x2(tt)
∫ 0

−x(tt)
yt exp(ty)dy〉

= 〈x2(tt)[1− exp(−tx(tt))]〉
= [

2
t2
− 1

4t2
] =

7
4t2
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and

〈y2(tt)I{x(tt)+y(tt)>0}〉 = 〈y2(tt)
∫ 1

−y(tt)
t exp(−tx)dx〉

= 〈y2(tt)(exp(ty(tt))− exp(−t))〉
= [

1
4t2
− 2
t2
exp(−t)]

Furthermore

〈x(tt)y(tt)I{x(tt)+y(tt)>0}〉 = 〈x(tt)
∫ 0

−x(tt)
yt exp(ty)dy〉

= 〈x(tt)[x(tt) exp(−tx(tt))−
∫ 0

−x(tt)
exp(ty)dy]〉

= 〈x(tt)[x(tt) exp(−tx(tt))− 1
t
(1− exp(−tx(tt)))]〉

= [
1
4t2
− 1
t2

+
1
4t2

]

which gives the desired results.
In words, the support vector machine also improves the standard deviation

of the generalization error by a factor of 1/2, comparing with the worst leaning
machine. As aformentioned it seems results on var(ε(t)) have not been reported
in the literature.

We could go further to estimate the distribution density of the generalization
error. However, from the fact that the mean and the standard deviation of the
generalization error are equal to each other, we could guess that the distribution
density of the generalization error is negatively distributed with the parameter
〈ε(t)〉, for both the worst learning machine and the support vector machine, a
conclusion which is proved in [7].

In summary, under some assumptions on its input distributions (see [7] as
well), we grasp a complete picture of the generalization behaviour of the one
diminsional support vector machine.

4 Generalization Error: Non-symmetric Cases

In the previous sections we have considered the support vector machine with
symmetric input distributions. Certainly we do not expect that x(i) and y(i) are
identically distributed in problems arising from practical applications. In this
section we assume that yL ∼ U(−L, 0) and the generalization error is then

ε(t) =
1
2
x(tt) + Ly(tt)

2
I{x(tt)+Ly(tt)>0} − 1

2L
x(tt) + Ly(tt)

2
I{x(tt)+Ly(tt)<0}

(7)
where L > 0 is a constant. The first term in Eq. (7) is

〈x(tt)
2

I{x(tt)+Ly(tt)>0}〉 = 〈x(tt)2

∫ 0

−x(tt)/L
t exp(ty)dy〉

= 〈x(tt)
2

(1− exp(−tx(tt)/L))〉

= [
1
2t
− L2

2(L+ 1)2t
]
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and the second term

〈Ly(tt)
2

I{x(tt)+Ly(tt)>0}〉 = 〈Ly(tt)2

∫ 1

−Ly(tt)
t exp(−tx)dx〉

= 〈Ly(tt)
2

(exp(tLy(tt))− exp(−t))〉
= −[ L

2(L+ 1)2t
− L

2t
exp(−t)]

Similarly for the third and the fourth term we have

〈x(tt)
2

I{x(tt)+Ly(tt)<0}〉 = 〈x(tt)2

∫ −x(tt)/L
−1

t exp(ty)dy〉

= 〈x(tt)
2

(exp(−tx(tt)/L)− exp(−t))〉

=
L2

2(L+ 1)2t

and

〈Ly(tt)
2

I{x(tt)+Ly(tt)<0}〉 = 〈Ly(tt)2

∫ −Ly(tt)
0

t exp(−tx)dx〉

= 〈Ly(tt)
2

(1− exp(tLy(tt)))〉
= −[ L

2t
− L

2(1 + L)2t
]

Summing together we finally obtain

〈ε(t)〉 = L

4(1 + L)t
+

1
4(1 + L)t

=
1
4t

=
〈d〉

4(1 + L)
(8)

where d = x(tt)− Ly(tt).
Eq. (8) tells us that the mean of the generalization error is the same as the

symmatic case and is proportional to 1/(1 + L), where 1 + L is conventionllly
thought of as the gap between support vectors. It is somewhat surprising to
note that the mean of the generalization error of the support vector machine is
independent of the scaling of the input distribution. From the proof of Eq. (8)
we see that the summation of the first and second term of Eq. (7) is not equal to
the summation of the third and the fourth term, much as 〈ε(t)〉 is independent of
L. This reveals one of the difficulties to prove a general conclusion as developed
in [5]. We have obtained a general conclusion and we will report it in [7].

5 Non-symmetric SVM

For the nonsymmetric case considered in the previous section, if the separation
hyperplane is again [x(tt) + y(tt)]/2 then the generalization error is

ε(t) =
1
2
x(tt) + y(tt)

2
I{x(tt)+y(tt)>0} − 1

2L
x(tt) + y(tt)

2
I{x(tt)+y(tt)<0}
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From Theorem 1 we know that

〈ε(t)〉 = 1
8t

+
1
8tL

When L is large we then have

〈ε(t)〉 = 1
8t

a further reduction of the mean of the generalization error is achieved. The
similar result is true for the variance of the generalization error.

The idea above can be implememted in the following way. We assume that
A1 and A2 are the data set to be learnt.

1. According to the support vector machine algorithm, we obtain the separation
hyperplane s1.

2. Calculate the distance beween the mean of A1, A2 and s1, denoting as d1 and
d2 respectively. When L is large, we have d1 = 1/2− [x(tt)+Ly(tt)]/2 ∼ 1/2
and d2 = L/2 + [x(tt) + Ly(tt)]/2 ∼ L/2.

3. In parallel with the hyperplane s1, we find a new hyperplane s2 so that

c1
d1

=
c2
d2

(9)

where c1 and c2 are the distance between s2 and A1 and A2 respectively.
We have c1 = x(tt) − [x(tt) + y(tt)]/2 = [x(tt) − y(tt)]/2 and c2 = [x(tt) +
y(tt)] − Ly(tt) ∼ −Ly(tt). Hence when s2 = [x(tt) + y(tt)]/2, we have Eq.
(9).

Since in general the obtained separation hyperplane is not symmetric about
the support vectors (maximization of the separation margin), we call s2 the sep-
aration hyperplane of a non-symmetric support vector machine. The fact that
the non-symmetric support vector machine improves the mean of the general-
ization error of s1 could be easily understood. The support vector machine use
only the information contained in the support vectors, while the non-symmetric
support vector machine explore the information of the whole data set since the
mean of the data is also taken into account.

6 Discussion

By virtue of the extremal value theory, we present here a novel approach to
calculate the mean and variance of the generalization error of the support vec-
tor machine and the worst learning machine. The exact mean and variance of
the generalization error are obtained. To estimate upper bounds for the support
vector machine is currently a very active topic. Our results reveal, for the first
time in ther literature, that how much the SVM improves the generalization
error, comparing with other learning algorithms. Much as we consider a very
simple case here, our results could also be used as a criteria to check how tight
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an estimated upper bound of general cases is (see [9, 3] and references therein).
The extremal value theory is somewhat similar to the central limit theorem: a
powerful and universal theorem and is almost independent of the sample distri-
butions (see [8, 4, 5] for details). We hope the new techniques introduced here
could help us to clarify some issues related to the SVM. Some of them we would
like to further pursue in future publications are the following.

– The support vector machine improves the mean of the generalization error
by a factor of a constant. From the calculations presented in the paper, we
see that the next term in the mean of the generalization error is of order
exp(−t). To find a learning algorithm with the mean of the generalization
of order exp(−t)–an exponential machine– would be a real breakthrough in
the field. The approach presented here provides us with such a possibility.

– We only consider the case of one dimension. Certainly it is interesting to
consider the models of high dimension. We will report it elsewhere[7].

– The extremal values are more sensitive to perturbations than other statistical
quantities such as the mean or median of samples. It is therefore interesting
to carry out a study on how the SVM relies on perturbations.
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