Abstract
Determining the parameters of a Radial Basis Function Neural Network (number of neurons, and their respective centers and radii) is often done by hand, or based in methods highly dependent on initial values. In this work, Evolutionary Algorithms are used to automatically build a RBF NN that solves a specified problem. The evolutionary algorithms are implemented using a new evolutionary computation framework called EO, which allows direct evolution of problem solutions, so that no internal representation is needed, and specific solution domain knowledge can beused to construct evolutionary operators, as well as cost or fitness functions. Results show that this new approach finds nets with good generalization power, while maintaining a reasonable size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. V. Adamopoulos, E. F. Georgopoulos, S. D. Likothanassis, and P. A. Anninos. Forecasting the MagnetoEncephaloGram (MEG) of Epilectic Patients Using Genetically Optimized Neural Networks. In Proceedings of the genetic and Evolutionary Computation Conference, GECCO’99, volume 2, pages 1457–1462. Morgan-Kaufmann Publ., July 1999.
C. M Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995. ISBN 0-19-853849-9 (hardback) or 0-19-853864-2 (paperback).
D. S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adaptative Networks. Complex Systems, 11:321–355, 1988.
S. Chen et al. Orthogonal Least Squares algorithm for constructing Radial Basis Function Networks. IEEE Transactions on Neural Networks, 2(2):302–309, 1991.
S. Chen et al. Regularised Orthogonal Least Squares Learning for Radial basis function Networks. Submitted to International Journal Control, 1995.
B. Fritzke. Supervised learning with growing cell structures. In J. D. Cowan, G. Tesauro, and J. Aspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 255–262. Morgan Kaufmann, 1994.
A. Leonardis and H. Bischof. And efficient MDL-based construction of RBF networks. Neural Networks, (11):963–973, 1998.
W. A. Light. Some aspects of Radial Basis Function approximation. Approximation Theory, Spline Functions and Applications, 356:163–190, 1992.
J. J. Merelo and A. Prieto. G-LVQ a combination of genetic algorithms and LVQ. In D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms. Springer-Verlag, 1995.
Zbigniew Michalewicz. Genetic algorithms + data structures = evolution programs. Springer-Verlag, NewYork USA, 3 edition, 1999.
J. E. Moody and C. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 2(1):281–294, 1989.
M. J. L. Orr. Regularisation in the Selection of Radial Basis Function Centres. Neural Computation, 7(3):606–623, 1995.
M. J. L. Orr. Optimising the Widths of Radial Basis Functions. V Brazilian Congress on Neural Networks, 1998.
J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3(2):213–225, 1991.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, 2nd edition, 1992.
P. A. Castillo; J. Carpio; J. J. Merelo; V. Rivas; G. Romero; A. Prieto. Evolving Multilayer Perceptrons. Neural Processing Letters, vol. 12, no. 2, pp.115–127. October, 2000.
P. A. Castillo; J. J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing, Vol. 35/1-4, pp.149–163, 2000.
J. J. Merelo; M. G. Arenas; J. Carpio; P. A. Castillo; V. M. Rivas; G. Romero; M. Schoenauer. Evolving objects. In M. Graña, editor, FEA2000 (Frontiers of Evolutionary Algorithms) proceedings. Proc. JCIS’2000. P. P. Wang (ed). Editorial Association for Intelligent Machinery. ISBN:0-9643456-9-2. Vol I, pp.1083–1086. Atlantic City, NJ, Feb. 27-March 3., 2000.
D. White and P. Ligomenides. GANNet: a genetic algorithm for optimizing topology and weights in neural networks design. In Lectures Notes in Computer Science, volume 686, pages 322–327, 1993. Proceedings of IWANN’93.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rivas, V.M., Castillo, P.A., Merelo, J.J. (2001). Evolving RBF Neural Networks. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_60
Download citation
DOI: https://doi.org/10.1007/3-540-45720-8_60
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42235-8
Online ISBN: 978-3-540-45720-6
eBook Packages: Springer Book Archive