Skip to main content

Neural Network Based on Multi-valued Neurons: Application in Image Recognition, Type of Blur and Blur Parameters Identification

  • Conference paper
  • First Online:
Bio-Inspired Applications of Connectionism (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2085))

Included in the following conference series:

Abstract

Some important ideas of image recognition using neural network based on multi-valued neurons are being developed in this paper. We are going to discuss the recognition of color images, distortion (blur) types, distortion parameters and recognition of images with distorted training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizenberg N.N., Aizenberg I.N.. Krivosheev G.A. “Multi-Valued Neurons: Learning, Networks, Application to Image Recognition and Extrapolation of Temporal Series”, Lecture Notes in Computer Science, Vol. 930, (J. Mira, F. Sandoval-Eds.), Springer-Verlag, pp. 389–395, 1995.

    Google Scholar 

  2. I.N. Aizenberg, N.N. Aizenberg “Pattern Recognition Using Neural Network Based on Multi-Valued Neurons”, Lecture Notes in Computer Sciense, Vol. 1607-II (J. Mira, J.V. Sanches-Andres-Eds.), Springer-Verlag, pp. 383–392, 1999.

    Google Scholar 

  3. I.N. Aizenberg, N.N. Aizenberg, J. Vandewalle Multi-Valued and Universal Binary Neurons: Theory, Learning, Applications, Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.

    Google Scholar 

  4. I. Aizenberg, N. Aizenberg, C. Butakoff, E. Farberov “Image Recognition on the Neural Network Based on Multi-Valued Neurons”, Proceedings of the 15 th International Conference on Pattern Recognition, Barcelona, Spain September 3-8, 2000, IEEE Computer Society Press, 2, pp. 993–996, 2000.

    Google Scholar 

  5. H. Aoki, Y. Kosugi “An Image Storage System Using Complex-Valued Associative Memory”, Proceedings of the 15 th International Conference on Pattern Recognition, Barcelona, Spain September 3-8, 2000, IEEE Computer Society Press, 2, pp. 626–629, 2000.

    Google Scholar 

  6. S. Jankowski, A. Lozowski, M. Zurada “Complex-Valued Multistate Neural Associative Memory”, IEEE Trans. on Neural Networks, 7, pp.1491–1496, 1996.

    Article  Google Scholar 

  7. S. Lawrence, C. Lee Giles, Ah Chung Tsoi and A.D. Back “Face Rocognition: A Convolutional Neural-Network Approach”, IEEE Trans. on Neural Networks, 8, pp. 98–113, 1997.

    Article  Google Scholar 

  8. A.V. Oppenheim and S.J. Lim “The Importance of Phase in Signals”, Proceedings IEEE, 69, pp. 529–541, 1981.

    Article  Google Scholar 

  9. O.P. Milyukova “On Justification of Image Model”, SPIE Proceedings, 3348, pp283–289, 1998.

    Article  Google Scholar 

  10. N. Ahmed, K.R. Rao Orthogonal Transforms for Digital Signal Processing, Springer, 1975.

    Google Scholar 

  11. W.K. Pratt Digital Image Processing, John Wiley & Sons, N.Y., 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aizenberg, I., Aizenberg, N., Butakoff, C. (2001). Neural Network Based on Multi-valued Neurons: Application in Image Recognition, Type of Blur and Blur Parameters Identification. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45723-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42237-2

  • Online ISBN: 978-3-540-45723-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics