Abstract
The classification of decelerations of the Fetal Heart Rate signal is a difficult and crucial task in order to diagnose the fetal state. For this reason the development of an automatic classifier would be desirable. However, the low incidence of these patterns makes it difficult. In this work, we present a solution to this problem: an auto-learning system, that combines self-organizing artificial neural networks and a rule-based approach, able to incorporate automatically to its knowledge each new pattern detected during its clinical daily use.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardes, J., Ayres-de-Campo, D., Costa-Pereira, A., Pereira-Leite, L., Garrido A.: Objective computerized fetal heart rate analysis. Int. J. Gynaecol. Obstet. 62(2) (1998) 141–147
Carpenter, G., Grossberg, S., Reynolds, J.H.: ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks 4 (1991) 565–588
Carpenter, G., Grossberg, S., Rosen, D.B.: Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4 (1991) 759–771
Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J.H.: Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE T. Neural Network. 3 (1992) 698–712
Fleiss, J.L.: Statistical Methods for Rates and Proportions. John Wiley, New York (1981)
Greene, K.R.: Intelligent fetal heart rate computer systems in intrapartum surveillance. Curr. Opin. Obstet. Gynecol. 8 (1996) 123–127
Guijarro-Berdinas, B., Alonso-Betanzos, A., Fernandez-Chaves, O., Alvarez-Seoane, M., Ucieda-Pardinas, F.: A neural network approach to the classification of decelerative cardiotocographic patterns in the CAFE project. In: Proc. Int. ICSC/IFAC Symp. on Neural Computation/NC'98. Vienna, Austria (1998) 827–834
Hamilton, E., Kimanani, E.K.: Intrapartum prediction of foetal status. In: Rogers, M.S., Chang, A.M.Z. (eds.): Clinical Obstetrics and Gynaecology. International Practice and Research, Analysis of Complex Data in Obstetrics, Vol. 8(3). Balliere’s Clinical Obstetrics and Gynaecology, London (1994) 567–581
Lotgering, F.K., Wallenburg, H.C.S., Schouten, H.J.A.: Inter-observer and intra-observer variation in the assessment of antepartum cardiotocograms. Am. J. Obstet. Gynecol. 125 (1982) 701–705
Rosen, B., Soriano, D., Bylander, T., Ortiz-Zuazaga, H., Schiffrin, B.: Training a neural network to recognize artefacts and decelerations in cardiotocograms. In: Proc. 1996 AAAI Spring Symposium on Artif. Intell. Med. Stanford, U.S.A. (1996)
Ulbricht, C., Dorffner, G., Lee, A.: Neural networks for recognizing patterns in cardiotocograms. Artif. Intell. Med. 12 (1998) 271–284
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guijarro-Berdiñas, B., Alonso-Betanzos, A., Fontenla-Romero, O., Garcia-Dans, O., Sánchez-Maroño, N. (2001). An Auto-learning System for the Classification of Fetal Heart Rate Decelerative Patterns. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_47
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_47
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive