Abstract
The present work focuses on the implementation of a robust and fault tolerant global vision system for RoboCup Small League soccer teams. It is based on a vision control approach, in which vision processes are guided by necessit yof information and knowledge aboutthe environment. The object detection is based on a chromatic approach where chromatic patterns were modeled using a mixture of gaussian functions, trained with a stochastic gradient descent method. The implemented system meets, and in certain cases exceeds, the functionality required to participate in RoboCup and reported in related works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ronald C. Arkin, Behavior-Based Robotics. MIT Press, 1998, ISBN 0-262-01165-4
Minoru Asada, Peter Stone, Hiroaki kitano, Alexis Drogoul, Dominique Duhaut, Manuela Veloso, Haijme Asama, and Sho’ji Suzuki, The RoboCup Physical Agent Challenge: Goals and Protocols for Phase I. Robot Soccer World Cup I / RoboCup-97, Springer-Verlag, 1997, pag. 42–61, ISBN 3-540-64473-3
Gordon Cheng and Alexander Zelinsky, Real-Time Vision Processing for a Soccer Playing Mobile Robot. Robot Soccer World Cup I/ RoboCup-97, Springer-Verlag, 1997, pag. 144–155, ISBN 3-540-64473-3
A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39(1), 1977, pag. 1–38
[Kitano et al.97]-Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa and Hitoshi Matsubara, RoboCup: A Challenge Problem for AI and Robotics. Robot Soccer World Cup I / RoboCup-97, Springer-Verlag, 1997, pag. 1–19, ISBN 3-540-64473-3
Michael Klupsch, Thorsten Bandlow, Marc Grimme, Ignaz Kellerer, Maximilian Lückenhaus, Fabian Schwarzer and Christoph Zierl, Agilo RoboCuppers: RoboCup Team Desciption. RoboCup-98: Robot Soccer World Cup II, 1998, pag. 431–438
RoboCup Home Page, http://www.robocup.org. Visited September 1999.
Hans G.C. Tråvén, A Neural Network Approach to Statistical Pattern Classification by “Semiparametric” Estimation of Probability Density Functions. IEEE Transactions on Neural Networks, 2(3), 1991, pag. 366–377
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramírez, J., Grittani, G. (2001). Robust Chromatic Identification and Tracking. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_60
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_60
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive