Abstract
At present we have a FSQL server available for Oracle© Databases, programmed in PL/SQL. This server allows us to query a Fuzzy or Classical Database with the FSQL language (Fuzzy SQL). The FSQL language is an extension of the SQL language which permits us to write flexible (or fuzzy) conditions in our queries to a fuzzy or traditional database. In this paper we have incorporated a method of ranking fuzzy numbers using Neural Networks to compare fuzzy quantities in FSQL. The main advantage is that any user can to train his own fuzzy comparator for any specific problem We consider that this model satisfies the requirements of Data Mining systems (high-level language, efficiency, certainty, interactivity, etc) and this new level of personal configuration makes the system very useful and flexible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S.M. Bass, H. Kwakernaak, “Rating and ranking of multiple-aspect alternatives using fuzzy sets”. Automatica 13, pp 47–58, 1997.
L. Campos, A. González, “A subjective approach for ranking fuzzy numbers”. Fuzzy Sets and Systems, 29, pp 145–153, 1989.
R.A. Carrasco, J. Galindo, M.C. Aranda, J.M. Medina, M.A. Vila, “Classification in Databases using a Fuzzy Query Language”. 9th International Conference on Management of Data, COMAD’98, Hyderabad (India), December 1998.
R.A. Carrasco, J. Galindo, M.A. Vila, J.M. Medina, “Clustering and Fuzzy Classification in a Financial Data Mining Environment”. 3rd International ICSC Symposium on Soft Computing, SOCO’99, pp. 713–720, Genova (Italy), June 1999.
M. Chen, J. Han, P.S. Yu “Data Mining: An overview from a Data Base Perspective”. IEEE Transac. On Knowledge and Data Engineering, Vol 8-6 pp. 866–883, 1996.
M.A. Vila, J.C. Cubero, J.M. Medina, O. Pons “On the use of Soft Computing Techniques in Data Mining Problems”. Technical report #DECSAI-96-01-12. Department of Computer Science and Artificial Intelligence. Universidad de Granada. Spain (1997).
W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus “Knowledge Discovery in Databases: An Overview” in G. Piatetsky-Shapiro, W.J. Frawley eds. “Knowledge Discovery in Databases” pp. 1–31, The AAAI Press, 1991.
J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, “A Server for Fuzzy SQL Queries”, in “Flexible Query Answering Systems”, eds. T. Andreasen, H. Christiansen and H.L. Larsen, Lecture Notes in Artificial Intelligence (LNAI) 1495, pp. 164–174. Ed. Springer, 1998.
J. Galindo, J.M. Medina, A. Vila, O. Pons, “Fuzzy Comparators for Flexible Queries to Databases”. Iberoamerican Conference on Artificial Intelligence, IBERAMIA’98, pp. 29–41, Lisbon (Portugal), October 1998.
J. Galindo, “Tratamiento de la Imprecisión en Bases de Datos Relacionales: Extensión del Modelo y Adaptación de los SGBD Actuales”. Ph. Doctoral Thesis, University of Granada (Spain), March 1999.
J. Galindo, J.M. Medina, J.C. Cubero, O. Pons, “Management of an Estate Agency Allowing Fuzzy Data and Flexible Queries”. EUSFLAT-ESTYLF Joint Conference, pp.485–488, Palma de Mallorca (Spain), September 1999.
R. Jain, “Tolerance Analisys using fuzzy sets”. Internat. J.Systems Sci, 7, pp 1393–1401, 1976.
J.M. Medina, O. Pons, M.A. Vila, “GEFRED. A Generalized Model of Fuzzy Relational Data Bases”. Information Sciences, 76(1-2), pp. 87–109, 1994.
F.E. Petry, “Fuzzy Databases: Principles and Applications” (with chapter contribution by Patrick Bosc). International Series in Intelligent Technologies. Ed. H.-J. Zimmermann. Kluwer Academic Publishers (KAP), 1996.
I. Requena, M. Delgado, J.L. Verdegay, “Artificial neural networks learn the criteria of a real decision-maker to compare fuzzy numbers”. Fuzzy Sets and Systems 64, pp 1–19, 1994.
I. Requena, M. Delgado, J.L. Verdegay, “A decision personal index of fuzzy numbers based on neural networks”. Fuzzy Sets and Systems 73, pp 185–199, 1994.
R.R. Yager, “Ranking fuzzy subsets over the unit interval”. Proc.. 1978 CDC, pp 1435–1437, 1978.
Q. Zhu, E.S. Lee, “Comparison and ranking of fuzzy numbers”. Fuzzy Regression Analysis. J. Kacpryk and Fedrizzi, eds. Omnitech Press, Warsaw, Poland, pp 21–44, 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carrasco, R., Galindo, J., Vila, A. (2001). Using Artificial Neural Network to Define Fuzzy Comparators in FSQL with the Criterion of some Decision Maker. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_71
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive