Abstract
This paper describes a currently project accomplished by the authors in the area of Power Quality (PQ) using artificial neural networks (ANN). The efforts are oriented to obtain a product (Power disturbances monitor for threephase systems) that permits a real time detection, automatic classification, and record process of impulsive or oscillatory voltage transients, long term disturbances, and waveform distortions in electrical three-phase AC signals. To classify the electrical disturbances, we consider using a fully connected feedforward ANN with a backpropagation learning method based on Generalized Delta Rule. In order to select the best alternative more than 200 network architectures were tested. Long-term disturbances, like swells or longduration interruptions, have been detected using a method based on the test of the RMS value of the signal. Short-term disturbances, like sags, are detected by sampling a cycle of the electrical signal, and waveform distortions are detected using the main harmonics of the signal. To train the ANN we have developed a three-phase virtual generator of electrical disturbances. In order to compress the ANN input data we use the Wavelet Transform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.C. Montaño, M. Castilla, J. Gutierrez, A. López, Sistema de medida y vigilancia de la calidad del suministro de potencia eléctrica, 5 as Jornadas Hispano-Lusas de Ingeniería Eléctrica, Salamanca, Spain, pp. 1643–1650, July 1997.
B.V. Brower, Low-bit rate image compression evaluation, SPIE, Orlando, FL, April 1994. SPIE
H. Guo, M. Lang, J.E. Odegard and C.S, Burrus. “Nonlinear Shrinkage of Undecimated DWT for noise reduction and data compression”. Proceedings International Conference on Digital Signal Processing. June 1995. Limasol, Cyprus.
D.L. Donoho. “De-noising by Soft-thresholding”. IEEE Trans. Inform. Theory, 41(3), pp. 613–627. May 1995.
D.L. Donoho, I.M. Johnstone. Ideal denoising in an ortonormal basis chosen from a library of bases,. Dept. of Statistics, Stanford Univ.,1994.
D.C. Robertson, O.I. Camps, J.S. Mayer, W.B. Gish. “Wavelets and electromagnetic power system transients”. IEEE Trans. Power Delivery, Vol.11, No2.April 1996.
D. Borrás, M. Castilla, J.C. Montaño. “Wavelet and neural structure: a new tool for diagnostic of power system disturbances”,. IEEE SDEMPED’99, pp. 375–380. Sept. 1999. Gijón (Spain).
M. Castilla, D. Borrás, JC. Montaño. “Wavelet and Neural Network Structure for Analyzing and Classifying Power System Disturbances”, EPE 99, Paper 488. ISDN:90-75815-04-2, Sept.1999,Lausanne (Switzerland)
D.L. Donoho, I.M. Jonhstone, Ideal Spatial Adaptation by Wavelet Shrinkage, Stanford Statistics Dept. Report TR-400, July 1992.
C. Liu, D.A. Pierce y H. Song, Intelligent System applications to Power Systems, IEEE Computer Application in Power, Oct. 1997.
T. Dillon, Neural Net Applications in Power System, CRL Publishing, 1996.
I. Dabbaghchi, R.D. Christie, G.W. Rosenwald, y C. Liu, AI Applications Areas in Power System, IEEE Expert, Jan-Feb. 1997.
M.A. El-Sharkawi, Neural Network’s Power, IEEE Potentials, Jan. 1997.
M. Kezunovic y I. Rikalo, Detect and Classify Faults Using Neural Nets, IEEE Computer Applications in power, Oct. 1996.
J.J. Buckley y T. Feuring, Fuzzy and Neural: Interactions and Applications, Physica-Verlag, 1999.
J.A. Freeman y D.M. Skapura, Redes Neuronales: Algoritmos, aplicaciones y técnicas de programación, Addison-Wesley, 1993.
D.R. Tveter, The Pattern Recognition Basis of Artificial Intelligence, IEEE Computer Society Press, 1998.
S. Haykin, Neural Networks. A Comprehensive Foundation, Prentice Hall, 1999.
M.H. Choueiki, C.A. Mount-Campbell and S.C. Ahalt, Building a quasi optimal neural network to solve the short-term load forecasting problem, IEEE Trans. on Power Systems, 12(4), 1432–1439, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
León, C., López, A., Monedero, I., Montaño, J.C. (2001). Classification of Disturbances in Electrical Signals Using Neural Networks. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_88
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_88
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive