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We present two complementary approaches for the interpretation o clusters of
co-regulated genes, such as those obtained from DNA chips and related meth-
ods. Starting from a cluster of genes with similar expresson profiles, two basic
questions can be asked:

1. Which mechanism is resporsible for the aordinated transcriptional response
of the genes? This question is approadched by extrading motifs that are shared
between the upstrean sequences of these genes. The motifs extraded are puta-
tive ds-ading regulatory elements.

2. What is the physiologicd meaning for the cdl to express together these
genes? One way to answer the question is to seach for potential metabalic
pathways that could be caayzed by the products of the genes. This can be
dore by seleding the genes from the duster that code for enzymes, and trying
to assemble the caalyzed readionsto form metabalic pathways.

We present tools to answer these two questions, and weill ustrate their use with
seleded examples in the yeast Saccharomyces cerevisiae. The tools are avail-
able on the web (http://ucmb.ulb.acbe/bicinformatics/rsa-tod d/;
http://www.ebi.acuk/research/pfbp/; http://www.soi.city.ac uk/~msch/).

1 Introduction

DNA chips (2-4) and related techniques permit the measurement of the transcrip-
tional resporse of al the genes of an organism to a cntrolled stimulus (pres-
enceabsence of metabdlites, adion d adrug, temperature, ...) or to a genetic modifi-
caion (deletion a over-expresson d aseleded gene). Results of several experiments
are ommbined into a multivariate table, summarizing the resporse of al the genes of



an organism to a variety of condtions. Genes can then be dustered onthe basis of
similarities in their expresson profiles. Different approadches have been used for this
purpose: hierarchicd clustering (4), self-organizing maps (17), k-means (25). Once
such clusters have been oltained, two complementary questions can be asked (Figure
1).
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(1) Which mechanism could ensure the cordinated transcriptional resporse of the
genes belongng to a given cluster? Transcriptional regulation is mediated by a dass
of proteins, cdled transcription fadors, which bind spedfic DNA motifs, cdled cis-
ading elements, and interad with RNA poymerase to enhance (adivation) or reduce
(represdgon) the expresson d neighbaing genes. The aswer to this question
amourts to a seach for transcription fadtors that might adt simultaneously on the
genes belonging to the duster. There is no obvous way to predict diredaly which
proteins ad in trans on a set of genes, but the problem can be aldressed indiredly by
first predicting which cis-ading elements might be invalved, and then looking for
transcription factors that might bind these ds-ading elements. The gproad consists
in analyzing upstream sequences to discover shared motifs, which could correspond
to regulatory elements. Candidate ds-ading elements can then be matched against
databases of known hinding sites (15, 26), and/or tested experimentally.



(2) Which hiologicd function requires a mordinated expresson d the genes be-
longng to the duster under consideration? It is usual that genes involved in a com-
mon processare m-regulated, ensuring the presence of al the necessary proteins. The
question amounts thus to seach for processes in which most genes of the duster
might be invalved. One simple gproac is to match the set of genes against a data-
base of gene/protein function (23). This would havever restrict the possble answers
to processes/pathways that have dready been previously characterized and are stored
in the database. A more flexible gproac isto try to identify readions that could be
caalyzed by the gene products, and to interconred these readions in any pcssble
way to generate potential metabalic pathways. The pathways assembled by this way
can then be matched against metabali c pathway databases. Part of these pathways will
correspondto previously described pathways, whereas in ather cases one shoud be
able to discover novel pathways.

This paper is a mini-review of our recent work on several aspeds related to the in-
terpretation o gene expresson cata. We ill ustrate the diff erent questions that can be
addressed onthe basis of a seleded study case, and dscuss ®me aiticd isaues for
obtaining suitable results. We refer to previously pulished work for a detailed de-
scription d the statisticd and algorithmic aspeds, which would go keyond the scope
of thisreview.

2 GeneExpression Data: a study case

To illustrate our purpose, we seleded an example of gene expresson cata from the
literature. Spellman and co-workers used the DNA chip techndogy to deted yeast
genesthat areinvolved in cdl cycle (16). These aithors measured the level of expres-
sion d al 6000 yeast genes at different time points during the cdl cycle, and seleded
thase showing periodic fluctuations. The 800 seleded genes were then clustered ac-
cording to similarities in their expresson profiles. Some of the dusters obtained were
clealy associated to well defined cdlular processes asociated to the cdl cycle. An
unexpeded cluster was aso isolated, mostly made of genes involved in methionine
biosynthesis. We will use this MET cluster as gudy case throughou the foll owing
chapters.

3 Visualization

The development of flexible and intuitive visualizaion toadls is an important re-
quirement for the interpretation d gene expresson data (Figure 1). One popuar ap-
proach has been to apply hierarchicd clustering and to display the profil es of expres-
sionin paralée with the dendrogram (5). We ae aurrently working oncomplementary
approaches, which would provide adired representation o the functional distances
between genes (7). Thisisill ustrated in Figure 2, which shows a mapping d the 800
genes from Spellman’s experiment on a Euclidian space Each dd represents asingle



gene. Coordinates were assgned so that the distances between dds refled the dis-
similarities between gene expresson profiles. Noticealy, genes are grosdy aligned
aongaring, which is probably the most dired way to represent cdl cycle. In particu-
lar, the center of the ring is avoided, and most genes align on the periphery, whereas
random data would occupy the ceanter as well as the periphery (not shown). Genes
with synchronous fluctuations of expresson appea in the same angle of the drcle.
The MET cluster mentioned abowe is highlighted.

H
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Figure 2: Visudizaion o gene expresson dbta. Spell man and co-workers (16) used DNA
chips to measure the level of expresson d al yeast genes during cdl cycle, and isolated 800
gene showing periodicd fluctuations. In the original paper, genes are displayed onatree In the
aternative representation shown above, genes are mapped onan Euclidian space Each da
represents a gene. Coordinates are assigned so that the distance between two dds refleds the
distance between the mrrespondng gene expression profiles. In the cae of cdl-cycle regulated
genes, most dats align onthe periphery of aring, and the center is avoided (which would na
be expeded from randam data). Genes having a synchronized pea of expressonarelocaed in
the same angle of the ring. The genes from the MET family, our study case, are highlighted.
Note that the visudlization programs suppat true wlors, and would allow to discriminate
severa clusters onthe sameimage (7). The present imageisin grayscde dueto pubicaion
restrictions.



4 Regulatory Sequence Analysis

Features of Cis-Regulatory Elements
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Figure 3: Structural fedures of transcription fador-DNA interfaces. A. Pho4pDNA complex.
Notice the two protein monomers ading onDNA like tweezes, and the restricted number of
adjacent nucleotides that enter into dired contad with the protein. B. Pho4p binding site. The
central oligonwcleotide shown in larger charaders (CACGTGGQG) is conserved among Pho4p
between sites. C. Gal4p-DNA complex. Gal4p kelongs to the Zn cluster family of transcription
fadors. Noticethe pair of trinucleotides entering into dired contad with the protein, separated
by an intermediate region. D. Gal4p kinding site. In contrast with Pho4p the mnserved region
is not an digonuwcleotide but a pair of trinucleotides (GGC-GGC) separated by a 11bpregion
of wedly conserved bases.

Transcription fadors bind to short stretches of DNA, whose sequence is highly
spedfic for ead particular transcription fador. The spedficity of the binding site is
determined by the structure of the protein damain that enters into dired contad with
DNA. Most sites described can be regrouped into two classes. The first classconsists
of a short sequence of highly conserved adjacent nucleotides (typicdly 6 base pairs),
surrounced by a few partly conserved nucleotides (Figure 3A,B). Thiskind o siteis
asciated to proteins containing dff erent types of DNA-binding damains: Zn finger,
homeodamain, leucine Zpper, basic Helix-Loop-Helix. Another classof binding sites
consists of a pair of very short oligonucleotides (typicdly 3 base pairs ead), sepa
rated by aregion d fixed width bu variable content (Figure 3C,D). These sites are



typicd for fadors containing a Zn cluster domain (foundin fung) or a Helix-Turn-
Helix domain (the most frequent DNA-binding damain in prokaryotes). Many of
these sites ow an internal symmetry (tandem repea or reverse palindrome) due to
the fad that the transcription fador binds DNA in a homodimeric form, ead mono-
mer entering into dired contad with ore trinucleotide.

In the yeast Saccharomyces cerevisiae, cis-ading elements are found ustream the
genes they control, within a range of 800 kase pairs from the start codon Their effi-
ciency generaly depends neither on their predse locaion na on their strand aienta
tion. It iscommon to find several sites for the same transcription fador within a same
upstrean region. These repetitions alow a synergic adion o severa copies of the
protein.

String-based Approachesto Pattern Discovery in Regulatory Sequences

Based onthese properties of yeast cis-ading elements, we developed two spedal-
ized programs for discovering puative regulatory elements within a set of upstream
regions.

Thefirst program, oligo-analysis, performs a statistica analysis of single word fre-
guencies (typicdly hexanucleotides) in a set of sequences, and extrads al words
which are significantly over-represented. In a previous paper (19) we showed that,
despite its smplicity, this program is able to extrad many regulatory sites with avery
low rate of false positives.

The single-word analysis however fails to deted some ds-ading elements, espe-
cially those bound byZn cluster proteins. This is not surprising, since in these sites
the conserved nucleotides are shared between two sub-sites eparated by a variable
region. Consequently, we developed a cmplementary program, dyad-analysis (24),
which performs a statisticd analysis of al posdble pairs of shorter words (typicaly
trinucleotides) with dff erent spadng values (between Oand 20. This program is very
efficient, not only for the detedion d sites bound byZn cluster and HTH proteins,
but also for sitesreagrized by dher classes of transcriptional fadors.

Criteriafor the Statistical Analysis of Wordsand Dyads

The dficiency of the dbove mentioned programs crucially depend onthe choice of
appropriate parameters.

Selection of non-redundant upstream sequences
Before envisaging any analysis of upstream sequences, it is esential to avoid re-
dundancy in the data set. Indeed, the gplicability of the statisticd tests relies on the
mutual independency of the sequences. Two sources of redundancy can be identified.
- Recent duplicaion d a gene, together with its upstream region. Such dugi-
cations are particularly commonin yeast telomeric regions.



- Intergenic region shared between two dvergently transcribed neighba
genes. If both genes belong to the same duster, the intermediate upstrean
regionwill be included twicein the sequence set.

The data set has thus to be purged by dscarding sequences that show a high simi-

larity with the dired or reverse strand d any aher sequence of the set.

How to count word occurrences?

Should words be murnted onasingle or both strands? How to trea overlapping accur-
rences of a same word? The choice of the murting mode depends on the expeded
charaderistics of regulatory sites, which can dffer between organisms. In the cae of
yeast, best results are obtained by courting cccurrences on bah strands and withou
overlap.

Estimation of Expected Word Frequencies

The simplest approach would be to consider all words as equiprobable. Thiswould
however provide bad results, due to the high frequency of A and T nucleotides in
yeast sequences. This bias can be correded by cdculating expeded word frequencies
on the basis of nucleotide-spedfic frequencies (residue frequencies). This corredion
adrealy provides better results, but still returns many false signals, mainly AT-rich
sequences, due to a preferential aggregation o A and T nucleotides in yeast non
coding sequences. The best approach consists in cdculating pre-defined tables of
expeded word frequencies (badgroundfrequencies), based on the whaole set of yeast
noncoding sequences.

How to Compare Expected and Observed Freguencies?

Severa statistics have been envisaged for deteding over-represented words in
DNA sequences: observed/expeded ratio (1), log likelihood(8), Poisson dstribution
(14), Z-values (21), binomial distribution (19, 24). The observed/expeded ratio hasto
be avoided, becaise it is grondy biased in favour of patterns with low expeded fre-
guencies. The log-likelihoodintroduces a @rredion for this bias, but is not easy to
convert to probabilistic values. Z-scores rely on an asamption d normality of the
distribution o occurrences, which is only verified when sequence length tends to-
wards infinite. For small sequence sets (a few thousands of base pairs) such as fami-
lies of upstream sequences from co-regulated genes, the most appropriate statistics
are Poisson and bnomial.

How to Select the Threshold of Probability?

Analyzing a single sequence set involves a comparison between observed and ex-

peded frequencies for several thousands of words. For example, there ae 4,096 p&-

sible hexanucleotides. This means that with a probability threshold of 0.01, around 40
words would still be seleded from any randam sequence. According to the Bonferoni

rule, these false positive can be avoided by lowering the threshold of probability to a
value lower than 1/4096=0.00025 For heptanucleotides, the threshold shoud be



lowered to 1/16,564. Thus, the threshold value has to be alapted to the number of
words taken into consideration, which itself depends onthe word length.

Sgnificance index
We defined a significance index (19, 24) which provides an intuitive way to evaluate
the degreeof over-representation.

sig = -log,,[P(occ = n)OD]

Where D is the number of possble patterns, and P(occ2n) the probability to ob-
serve n o more occurrences for the word considered. This probability can be cdcu-
lated with the binomial, Poisson a normal forumula, as described above.

The significance index takes into consideration the dfeds mentioned abowe, in-
cluding the reduction d significance when the number of posshle patterns increase.
The index can take pasitive or negative values. The interpretation is fairly intuitive.
Positive values indicae over-representation. In randam sequence sets, one expeds to
find nomore than ore pattern with a positive value, independently of the condtions
such as squence length, number of sequences, pattern length, ... A value higher than
1is expeded every 10 sequence sets, a value higher than 2 every 100 sequence sets,
and more generaly a value higher than s is expeded every 10 sequence sets. The
index appliesto spaced dyads (24) aswell as sngle oligonucleotides (19).

How to Select Word Length?
Small words (di- to tetra-nucleotides) present a marked hias from theoreticd distribu-
tions, and Poison/binomial statistics are thus inappropriate. On the other side, ana-
lyzing too large words (octa-, hona-nucleotides) would prevent any of them to be
deteded as sgnificant. Pradicdly, we observed that hexanucleotide analysis provides
excdlent resultsin most cases for yeast sequences (19).

Even when restricting the analysis to hexanucleotides, larger patterns can neverthe-
lessbe deteded, by assembling strondy overlapping hexanucleotides.

All the statisticd considerations above ae eaily extended to the analysis of spacal
dyads (24).

Evaluation of String-based Approacheswith Known Regulons

In order to evaluate the ebove methods, sets of genes were wlleded for which the
transcription fadtor was arealy known. The programs were fed with the upstream
sequences, and the significant patterns were compared with the expeded binding sites
(19, 24). Generdly, the number of significant words/dyads is restricted to a dozen per
gene set. Some of these seleded words/dyads grondy overlap with ead ather, and
can be mmbined (using a aistom fragment asembly program cdled pattern-
assembly) to form a larger pattern. Pattern assambly also allows to describe, to some
extent, the partial degeneracy of some binding sites. Indedd, it is frequent to deted
severa patterns that differ by a single substitution, and correspondto variants reamg-
inzed by the same transcription fador. Patterns with a high significance index are



aways asociated with known transcription fadors. Some alditional patterns appea
that might be associated with nowel transcription fadors.

Application to Clusters Obtained from Microarray and Related Technologies

After having evaluated the programs with known regulons, we gplied the same
string-based approaches to extrad putative regulatory elements from clusters of genes
resulting from DNA chip experiments. We published elsewhere (24) an analysis of
families of cdl cycle regulated genes defined by Spellman (16). We show here in
more detail s the results obtained with the MET family (Table 1). All pairs of trinu-
cleotides sparated by spadng between 0 and 20were anaylzed. The significant pat-
terns form three groups of overlapping words, that can be assembled into 3 larger
patterns. One alditional isolated dyad is €leded.

The first group d words corresponds to the binding site of the
Metdp/Met28p/Chflp complex. The second goup corresponds to Met31p and
Met32p hinding sites. All these transcription fadors are known to ad cooperatively to
adivate transcription of genes related to methionine metabolism. The highest score
within ead groupis highlighted in bdd. The pattern seleded with the highest score
generaly corresponds to nucleotides that enter into dired contaa with the transcrip-
tionfador.

It is not possble to evaluate the dficiency of the programs on famili es obtained
from DNA chip experiments with the same predsion as was dore with knawn regu-
lons, since the transcription factors are usually nat known. However, we observed
that the same kind o result is generally obtained: a very restricted number of
words/dyads are seleded as sgnificant. For some famili es, patterns are seleded with
avery high significance index, suggesting a very likely putative regulatory element.
In other famili es, the patterns sleded have alower significanceindex. Thisis often
the case for very small famili es (lessthan 5 genes), and results from areduction d the
signal-to-noise ratio. On the other extreme, analyzing too large gene dusters (> 50)
reduces the sensitivity of the programs. The reason is that the larger clusters are less
likely to be regulated by a single fador, and might contain a mixture of different
signals. The dfed of mixing together sequence that contains a given signal with se-
guences that do ot contain it is also to reduce the signal-to-noise ratio. The programs
are dle, to some extent, to extrad multiple signals from a single analysis, but the
highest efficiency is clealy obtained by seleding clusters of genes that are likely to
be dl regulated by the same transcription factor. The choice of the dustering method
isthus crucid.



pattern reverse complementary obs occ expocc proba  sig

group 1 GIC.. GIG . ..CAC..GAC 17 2.61 3.60E-09 3.8
.TCA GIG . .. CAC. TGA 23 5.12 8.50E-09 3.4
. TCACGT. . . ... ACGTGA 21 4.75 4.60E-08 2.7
.. CACGTG . .. CACGTG. . 38 3.37 0 20
..CAC. TGA . TCA. GTG . 23 5.12 8.50E-09 3.4
..CAC.. GAC GIC.. GIG . 17 2.61 3.60E-09 3.8
... ACGTGA. . TCACGT. . . 21 4.75 4.60E-08 2.7

assembly GTCACGTGAC GICACGTGAC
group 2 CGCCAC. . . . GIG3CG 14 2.32 2.00E-07 2.1
. GOCACA. .. . TGTGGC. 21 4.06 3.30E-09 3.8
..CCA .GIT AAC. . TGG 23 5.86 9.10E-08 2.4
.. CCACAG . CTGTGG 24 3.53 2.30E-12 7
.. CCA AGT. ACT. TGG 21 459 2.60E-08 2.9
CACAGT. ACTGTG 24 5.41 520E-09 3.6
..CAC. GIT AAC. GTG 24 5.79 1.90E-08 3.1

assembly CGCCACAGTT AACTGTGECG
group 3 ACC................ TG LCCA L GGT 15 2.9 5.10E-07 1.7
LOCA L GGT ACC........ovvnnn. TGG 15 2.9 5.10E-07 1.7
LOCA L TG LOCA L TGG 22 3.16 1.10E-06 1.3

assembly ACCA .............. TGGT ACCA .............. TGGT

[isolated CAG .. TGG CCA. .. CTG 17 3.12 4.60E-08 2.7

Table 1: patterns extraded by dyad-analysis with the MET family. Legends: obs occ: observed
occurrences; exp occ. expeded occurrences; proba: binomia probability; sig: significance
index. All patterns with significance value higher than 1 were seleded. Some patterns can be
grouped together on the basis of sequence similarities, and assembled into larger patterns
(contigs). The first group corresponcs to the sequence recgnized by the protein complex
Met4p/Met28p/Chflp. The second goup describes the site bound by Met31p and its
homologue Met32p. These fadors are those known to regulate methionine biosynthesis in the
yeast Saccharomyces cerevisiae. To ou knowledge, the third group and the isolated petterns
do nd show any obvious smilarity to knowvn hinding sites, and could reved new regulatory
patterns.

5 Metabolic Network Analysis

We focus now on the second question, namely the functional interpretation o clusters
of co-regulated genes.

Representating M etabolic Pathways as Graphs

The set of al possble metabadlic readions can be seen as a graph, with two types
of nodes (metabalites and readions respedively). Arcs represent substrate-readion
and readion-product relationships. A graph containing all known metabalic reactions
would include of the order of 10" nodes and as many arcs. The mnredivity is very
high for some particular compound (ATP, Adenosyl-Methionine), but besides these



“pod metabdlites’, the vast mgjority of compound are involved in a very limited
number of readions. Readions have between 1and 6substrates (2 onaverage) and as
many products. The complexity of such a graph is huge and the number of possble
pathwaysis virtualy infinite.

However, only avery restricted number of these possble pathways are dfedively
followed in living aganisms. For instance, the database EcoCyc, which hdds the
most comprehensive information abou Escherichia coli metabolism, only contains
159 dstinct pathways. E. coli has been, for several decales, the preferred model or-
ganism for biochemists, and even thoughsome parts of its metabolism certainly re-
main to be discovered, the number of pathways is not expeded to increase signifi-
cantly for this organism.

Metabolic Pathway Discovery
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Figure 4: aternative pathways for methionine biosynthesisin E. coli and S. cerevisiae.

Many pathways however remain be discovered in other organisms. Inded, it is
common to observe that diff erent organisms follow distinct pathways for the biosyn-
thesis or degradation d the same moleaule. For example, in E. coli, methionine is
synthesized in 7 steps from aspartate, whereas the yeast Saccharomyces cerevisiae
performs this transformation in 6 steps, 4 of which are ommon with E. coli (Figure



4). The cae of lysine is more extreme, since E. coli and S cerevisiae follow com-
pletely diff erent pathways to synthesize this metabadlite.

In addition, many perts of the metabolism remain largely unexplored, for example
the mechanisms of toxic moleaule degradation a resistance to extreme cndtions
ohserved in some baderia.

In summary, among all the pathways that could be followed in the graph o meta-
bdlic readions, only a very restricted fradion corresponds to alrealy described path-
ways. Ancther part corresponds to pathways that are not yet described bu might
appea to be dfedively used by some organisms in response to some nditions.
Finaly, a vast mgjority of these pathways might be devoid of any hiologicd rele-
vance. Asill ustrated below, measuring the transcriptional resporse of all the genes of
an arganism could be one way to seled those pathways that are most likely to corre-
spondto hiologicd processes.

Metabolism and Gene Expression

Living aganisms can rapidly modify their internal concentration d small mole-
cules (metabdlites) via enzymatic caalysis. Controlling metabalite fluxes is esential
to cdl viability, in that it alows the cél to maintain hiochemicd compounds in sta-
tionary concentrations (homeostasis), in spite of fluctuations of their externa avail-
ability and internal consumption rates. Several moleaular mechanisms are involved in
metaboli c regulation. Enzymes and transporters are regulated at diff erent levels: tran-
scription rate, RNA stability, trandation rate, protein adivity, intracélular location,
protein degradation. Several of these mechanisms can be combined for the control of
the same metabalic pathway. Enzymes and transporters participating in a mmmon
metabalic pathway are often co-regulated at the transcriptional level. Thus, when the
culture medium is modified by depleting (or adding) a given metabdlite, it is expeded
that the genes that participate in the biosynthesis (or degradation) of the moleaule will
respondat the transcriptional level. DNA chip and related techndogies can be used to
unravel the set of genes that respondto a given perturbation o the external condtions
(addition/removal of a metabalite) in a given organism. The question is thus to ds-
cover, from this st of genes, which particular pathway could be cdalyzed.

Applying Graph Analysis for a Functional Interpretation of Gene Expression
Data

The first step is to seled, among the set of co-regulated genes, those that code for
enzymes, and identify the readions they could caalyze These readions correspond
to a subset of nodes in the graph o all possble metabalic readions (Figure 5A). The
method consists in trying to interconred all these readions in a meaningful way
(Figure 5B), in order to extrad a sub-graph (Figure 5C) correspondngto ore or sev-
eral putative metaboli c pathways (Figure 5D). The dgorithms for subgraph extradion
and maximal path enumeration have been described elsewhere (22, 23), and we will
only summarizetheir principle.
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Figure 5: conceptua schema of the subgaph extradion. A: graph representation d metabolic
pathways. Two types of nodes are used to represent metabalites (circles) and readions (rectan-
gles) respedively. Arcs represent the relationships between readions and their substrates and
products. Fill ed redangdles represent seed readions, i.e. those that are caalyzed by genes be-
longngto the m-regulated cluster. B: A dired link (dark gray) can be established between two
readions when the first one produces a metabdlite that is used as substrate by the second ore.
Optiondly, one can dedde to alow intercdating readions (ligt gray) that were nat part of the
initial seeds, if this improves the mnredivity. C: Conreded components are then extraded
from the graph. The etraded subgaph represents a metabolic pathway that is potentially
caadyzed bythe duster of co-regulated genes. D: When the subgraph contains branches, it can
be decomposed into nonredundant elmentary paths, which highlight potential endpants of the
metabali c pathways.

The simplest way to interconred readions is to identify compounds that are pro-
duced by one readion and wsed as substrate by another one. In a second step, linking
can be improved by intercdating readions that were not part of the initial set. Several
reasons could be invoked to justify such an intercaation. Firstly, some genes could be
invalved in the metabali c pathway withou being regulated at the transcriptional level.
Seoondy, microarray techndogies are still li mited in reproducibility and some regu-
lations might have escgped detection. A third posshility would be that the gene is
present on the chip andits expresson level has been measured corredly, but this gene
has not been annadated as an enzyme yet. Indeed, for newly sequenced genomes, gene
function is usualy predicted by sequence simil arities, and many genes remain uren-



notated. In such a cae, the best candidates to ensure the missng enzymatic caalysis
are the genesthat belongto theinitia cluster itself, but have no assgned function yet.

Comparison of Extracted Pathwayswith Known Pathways

Once the subgaph hes been extraded, the putative pathway can be compared to
the set of known metabalic pathways gored in some metabolic pathway database (9,
10, 23).

In some cases the pathway extraded from the gene duster will correspondto some
previoudy charaderized pathway. For such cases, a simple matching o the set of
readions against a database of metabalic pathways would have provided the same
answer. In other cases, one might observe only a partial match with a known path-
ways. The subgaph extradion might thus reved an dternative to the pathway fol-
lowed in the model organism. The method could be gplied to study the metabolism
of newly sequenced organisms, whase metabolism has been poaly characterized.

Finally, in some caes, one shoud be @le to extrad completely novel pathways.
The m-regulation d the enzyme-coding genes would provide agoodsuppart to indi-
cde that this pathway is biologicdly relevant. An interesting field of application
would be to discover metabadlic pathways involved in largely unexplored processes,
such as resistance to toxic compounds or extreme @ndtions. Another applicaion is
to reved which metabadlic pathways are dfeded by anew drug.

Application of Pathway Analysisto the Study Case

We gplied the dove procedure to the 20 genes belongng to the MET cluster de-
fined by Spellman and co-workers. Seven of these genes code for enzymes, which
can catalyze 8 distinct readions. Subgaph extradion and maximal path enumeration
resulted in alinea pathway including 6 d theinitial readions (Figure 6). In this case,
the linea path was obtained withou intercdating any readion that was nat part of the
initial set.

The pathway shows partial matches with two distinct metabolic pathways. the 4
initial steps match the sulfur assmilation pathway, and perform a progressve reduc-
tion d sulfate into sulfide. The two last steps match the methionine biosynthesis
pathway, and correspond to the incorporation d sulfur into homocysteine, and the
transformation d the latter into methionine. Sulfur assmil ation and methionine bio-
synthesis are intrinsicdly related in the yeast Saccharomyces cerevisiag sincein this
organism sulfur amino adds are dl derived from the methionine biosynthesis path-
way (this differs from Escherichia coli, where sulfur isincorporated into cysteine and
then transferred to methionine). It makes thus ®nse to have a ©ordinated transcrip-
tional regulation d al the metabadlic steps from sulfate to methionine. Indeed, these
genes are dl known targets of the methionine-regulating transcription fadors de-
scribed abowve (18).



Pathway Matching
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Figure 6: result obtained by pathway analysis with the cdl-cycle regulated gene duster MET
from Spellman (16). Six of the readions potentialy catalyzed by enzymes-coding genes from
the duster can be ssembled into asingle linea pathway, withou need to intercdate any addi-
tional readion. The pathway extraded is the way used by yeast to incorporate sulfur into
amino adds, by reduction o sulfate into sulfide, which is incorporated in hamocyteine. This
pathway matches two distinct pathways from the database: the first 4 steps correspondto sulfur
asgmilation, whereas the two last steps are part of the methionine biosynthetic pathway.

In summary, starting from an unadered set of readions, the program was able to
build a linea metabalic pathway, which correspondto ou expedation for the study
case. In this particular case, the pathway was already well charaderized and a similar
result would have been oltained by matching the seed readions against a database of
metabalic pathways like KEGG. However, since this pathway was re-discovered by
the program withou any a priori information abou how readions do assemble into
pathways in the yeast (the matching with knovn pathways was only dore aposteri-
ori), one can hope that the same method will also provide ameans of discovering
novel pathway. We ae airrently optimizing the program and evaluating it perform-
ances in dfferent condtions, on the basis of well charaderized pathways. The opti-
mized program will then be used to provide an interpretation of gene expression cata
in terms of metabali c pathways.



6 Conclusions

In the mntext of genomic gpproaches, coding sequence analysis is often insuffi-
cient to systematicdly asdggn a function to ead gene. The function depends not only
on the structure of the encoded protein, but also onthe context in which this protein
exerts its adivity. Functional predictions thus require the integration o different lev-
els of information.

The posshility to measure the transcriptional response & a genome scde off ers ex-
citing perspedives for the discovery of gene function, taking into acourt the ways
genes are a0ciated in functional clusters. By combining regulatory sequence analy-
sis and metabadlic pathway analysis, one muld oltain two independent and comple-
mentary sources of information for these dusters of co-regulated genes. The same
methods also apply to clusters of genes obtained from other functional genomics
approaches, such as phylogenetic profiles (13) and gene fusion/fisson analysis (6, 11,
12).

7 Availability

Regulatory Sequence Anaysis todls are available on the web (20) at the URL
http://ucmb.ulb.ac.be/bicinformatics/rsa-tods. The home page for the EBI projed of
database on Protein  Function and Biochemicd Pathways is at
http://www.ebi.acuk/reseach/pfbp/. A prototype version d the patwhay anaysis
tools can be accesd from this ste. A prototype version d the visudization tods is
available & http://www.soi.city.acuk/~msch/.
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