Skip to main content

Segmentation by Maximal Predictive Partitioning According to Composition Biases

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2066))

Abstract

We present a method for segmenting qualitative sequences, according to a type of composition criteria whose definition and evaluation are founded on the notion of predictors and additive prediction. Given a set of predictors, a partition of a sequence can be precisely evaluated. We present a language for the declaration of predictors. One of the problems is to optimize the partition of a sequence into a given number of segments. The other problem is to obtain a suitable number of segments for the partitioning of the sequence. We present an algorithm which, given a sequence and a set of predictors, can successively compute the optimal partitions of the sequence for growing numbers of segments. The time- and space-complexity of the algorithm are linear for the length of sequence and number of predictors. Experimentally, the computed partitions are highly stable regard to the number of segments, and we present an application of this approach to the determination of the origins of replication of bacterial chromosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Fisher. On grouping for maximal homogeneity. Journal of the American Statistical Association, 53:789–798, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.D. Gordon. Cluster validation. In C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.H. Bock, and Y. Baba, editors, Studies in Classification, Data Analysis, and Knowledge Organization: Data Science, Classification, and Related Methods, pages 22–39, Kobe, March 1996. IFCS, Springer-Verlag. http://www-solar.dcs.st-and.ac.uk/~allan/.

  3. J.C. Gower. Maximal predictive classification. Biometrics, 30:643–654, 1974.

    Article  MATH  Google Scholar 

  4. L. Guéguen, R. Vignes, and J. Lebbe. Maximal predictive clustering with order constraint: a linear and optimal algorithm. In A. Rizzi, M. Vichi, and H. Bock, editors, Advances in Data Science and Classification, pages 137–144. IFCS, Springer Verlag, July 1998.

    Google Scholar 

  5. D.M. Hawkins and D.F. Merriam. Optimal zonation of digitized sequential data. Mathematical Geology, 5(4):389–395, 1973.

    Article  Google Scholar 

  6. J.R. Lobry. Asymmetric substitution patterns in the two dna strands of bacteria. Mol. Biol. Evol., 13(5):660–665, 1996.

    Google Scholar 

  7. E.P.C. Rocha, A. Danchin, and A. Viari. Universal replication biases in bacteria. Molecular Microbiology, 32(1):11–16, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guéguen, L. (2001). Segmentation by Maximal Predictive Partitioning According to Composition Biases. In: Gascuel, O., Sagot, MF. (eds) Computational Biology. JOBIM 2000. Lecture Notes in Computer Science, vol 2066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45727-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45727-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42242-6

  • Online ISBN: 978-3-540-45727-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics