Skip to main content

Patterns of Dependencies in Dynamic Multivariate Data

  • Conference paper
  • First Online:
Pattern Detection and Discovery

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2447))

  • 480 Accesses

Abstract

In intensive care, clinical information systems permanently record more than one hundred time dependent variables. Besides the aim of recognising patterns like outliers, level changes and trends in such high-dimensional time series, it is important to reduce their dimension and to understand the possibly time-varying dependencies between the variables. We discuss statistical procedures which are able to detect patterns of dependencies within multivariate time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Imhoff, M., Bauer, M.: Time Series Analysis in Critical Care Monitoring. New Horizons 4 (1996) 519–531

    Google Scholar 

  2. Brillinger, D.R.: Remarks Concerning Graphical Models for Time Series and Point Processes. Revista de Econometria 16 (1996) 1–23

    MathSciNet  Google Scholar 

  3. Dahlhaus, R.: Graphical Interaction Models for Multivariate Time Series. Metrika 51 (2000) 157–172

    Article  MATH  MathSciNet  Google Scholar 

  4. Gather, U. Imhoff, M., Fried, R.: Graphical Models for Multivariate Time Series from Intensive Care Monitoring. Statistics in Medicine, to appear

    Google Scholar 

  5. Li, K.-C.: Sliced Inverse Regression for Dimension Reduction (with discussion). J. Amer. Statist. Assoc. 86 (1991) 316–342

    Article  MATH  MathSciNet  Google Scholar 

  6. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, Chichester (1990)

    Google Scholar 

  7. Cox D.R., Wermuth N.: Multivariate Dependencies. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  8. Lauritzen, S.L.: Graphical Models. Clarendon Press, Oxford (1996)

    Google Scholar 

  9. Edwards, D.: Introduction to Graphical Modelling. Second Edition. Springer, New York (2000)

    MATH  Google Scholar 

  10. Dahlhaus, R., Eichler, M.: Causality and Graphical Models in Time Series Analysis. Preprint, Department of Mathematics, University of Heidelberg, Germany (2001)

    Google Scholar 

  11. Brillinger, D.R.: Time Series. Data Analysis and Theory. Holden Day, San Francisco (1981)

    Google Scholar 

  12. Dahlhaus, R., Eichler M.: Spectrum. The program is available at http://www.statlab.uni-heidelberg.de/projects/graphical.models/

  13. Granger, C.W.J., atanaka M.: Spectral Analysis of Economic Time Series. Princeton Press, Princeton (1964)

    MATH  Google Scholar 

  14. Fried, R., idelez, V.: Decomposition and Selection of Graphical Models for Multivariate Time Series. Technical Report 17/2002, SFB 475, University of Dortmund, Germany

    Google Scholar 

  15. Peña, D., Box, G.E.P.: Identifying a Simplifying Structure in Time Series. J. Americ. Stat. Assoc. 82 (1987) 836–843

    Article  MATH  Google Scholar 

  16. Gather, U., Fried, R., Lanius, V., Imhoff, M.: Online Monitoring of High Dimensional Physiological Time Series-a Case-Study. Estadistica, to appear

    Google Scholar 

  17. Ombao, H.C., Raz, J.A., von Sachs, R., Malow, B.A.: Automatic Statistical Analysis of Bivariate Nonstationary Time Series-In Memory of Jonathan A. Raz. J. Amer. Statist. Assoc. 96 (2001) 543–560

    Article  MATH  MathSciNet  Google Scholar 

  18. Kano, M., Hasebe, S., Hashimoto, I., Ohno, H.: A New Multivariate Statistical Process Monitoring Method Using Principal Component Analysis. Comput. Chem. Eng. 25 (2001) 1103–1113

    Article  Google Scholar 

  19. Becker, C., Fried, R., Gather, U.: Applying Sliced Inverse Regression to Dynamical Data. In: Kunert, J., Trenkler, G. (eds.): Mathematical Statistics with Applications in Biometry. Festschrift in Honour of Siegfried Schach, Eul-Verlag, Köln (2001) 201–214

    Google Scholar 

  20. Cook, R.D.: Graphics for Regressions With a Binary Response. J. Amer. Statist. Assoc. (1996) 983–992

    Google Scholar 

  21. Imhoff, M., Bauer, M., Gather, U., Fried, R.: Pattern Detection in Physiologic Time Series Using Autoregressive Models: Influence of the Model Order. Biometrical Journal, to appear

    Google Scholar 

  22. Karlsen, H.A., Myklebust, T., Tjostheim, D.: Nonparametric Estimation in a Nonlinear Cointegration Type Model. Discussion Paper, SFB 373, Berlin, Germany (2000)

    Google Scholar 

  23. Tong, H.: Non-linear Time Series. A Dynamical System Approach. Clarendon Press, Oxford (1990)

    Google Scholar 

  24. Becker, C., Fried, R.: Sliced Inverse Regression for High-dimensional Time Series. In: Opitz, O., et al. (eds.): Proceedings of the 25th Annual Conference of the German Society for Classification. Springer-Verlag, Berlin Heidelberg New York, to appear

    Google Scholar 

  25. Wermuth, N., Lauritzen, S.L.: On Substantive Research Hypotheses, Conditional Independence Graphs and Graphical Chain Models. J. R. Statist. Soc. B 52 (1990) 21–50

    MathSciNet  Google Scholar 

  26. Chen, C.H., Li, K.C.: Can SIR be as Popular as Multiple Linear Regression? Stat. Sinica 8 (1998) 289–316

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gather, U., Fried, R., Imhoff, M., Becker, C. (2002). Patterns of Dependencies in Dynamic Multivariate Data. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds) Pattern Detection and Discovery. Lecture Notes in Computer Science(), vol 2447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45728-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45728-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44148-9

  • Online ISBN: 978-3-540-45728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics