Skip to main content

Complex Data: Mining Using Patterns

  • Conference paper
  • First Online:
Pattern Detection and Discovery

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2447))

  • 486 Accesses

Abstract

There is a growing need to analyse sets of complex data, i.e., data in which the individual data items are (semi-) structured collections of data themselves, such as sets of time-series. To perform such analysis, one has to redefine familiar notions such as similarity on such complex data types. One can do that either on the data items directly, or indirectly, based on features or patterns computed from the individual data items. In this paper, we argue that wavelet decomposition is a general tool for the latter approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dario Benedetto, Emanuele Caglioti, and Victor Loreto. Language trees and zipping. Physical Review Letters, 88(4), 2002.

    Google Scholar 

  2. C.H. Bennet, P. Gács, M. Li, P.M.B. Vitányi, and W. Zurek. Information distance. IEEE Trans. on Information Theory, 44(4):1407–1423, 1998.

    Article  Google Scholar 

  3. R.J. Bolton and D.J. Hand. Unsupervised profiling methods for fraud detection. Credit Scoring and Control VII, Edinburgh, 2001.

    Google Scholar 

  4. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis-Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

    Google Scholar 

  5. David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining. MIT Press, 2001.

    Google Scholar 

  6. Tamer Kahveci and Ambuj K. Singh. An efficient index structure for string databases. In Proceedings of the 27th VLDB, pages 351–360. Morgan Kaufmann, 2001.

    Google Scholar 

  7. Ming Li, Xin Li, Bin Ma, and Paul Vitányi. Normalized Information Distance and Whole Mitochondrial Genome Phylogeny Analysis. arXiv:cs.CC/0111054v1, 2001.

    Google Scholar 

  8. Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer Verlag, 1993.

    Google Scholar 

  9. S.G. Mallat and W.I. Wang. Singularity detection and processing with wavelets. IEEE Trans. on Information Theory, 38, 1992.

    Google Scholar 

  10. Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), 1965.

    Google Scholar 

  11. Frederick Mosteller and David L. Wallace. Applied Bayesian and Classical Inference-The Case of The Federalist Papers. Springer Verlag, 1984.

    Google Scholar 

  12. R. Todd Ogden. Essential Wavelets for Statistical Applications and Data Analysis. Birkhäuser, 1997.

    Google Scholar 

  13. Simone Santini. Exploratory Image Databases-Content-Based Retrieval. Academic Press, 2001.

    Google Scholar 

  14. Simeon J. Simoff and Osmar R. Zaïane, eds.. Proceedings of the First International Workshop on Multimedia Data Mining,MDM/KDD2000. http://www.cs.ualberta.ca/zaiane/mdm_kdd2000/, 2000.

  15. Zbigniew R. Struzik and Arno Siebes. Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series. Physica A: Statistical Mechanics and its Applications, 309(3–4):388–402, 2002.

    Article  MATH  Google Scholar 

  16. Z.R. Struzik and A.P.J.M. Siebes. The haar wavelet in the time series similarity paradigm. In Proceedings of PKDD99, LNAI 1704, pages 12–22. Springer Verlag, 1999.

    Google Scholar 

  17. Osmar R. Zaïane and Simeon J. Simoff, eds.. Proceedings of the Second International Workshop on Multimedia Data Mining, MDM/KDD2001. http://www.acm.org/sigkdd/proceedings/mdmkdd01, 2001.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebes, A., Struzik, Z. (2002). Complex Data: Mining Using Patterns. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds) Pattern Detection and Discovery. Lecture Notes in Computer Science(), vol 2447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45728-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45728-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44148-9

  • Online ISBN: 978-3-540-45728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics