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Abstract. Neurodegenerative diseases are often associated with loss of
brain tissue volume. Our objective was to develop and evaluate a fully
automated method to estimate cerebral volume from magnetic resonance
images (MRI) of patients with multiple sclerosis (MS). In this study,
MRI data from 17 normal subjects and 68 untreated MS patients was
used to test the method. Each MRI volume was corrected for image
intensity non-uniformity, intensity normalized, brain masked and tissue
classified. The classification results were used to compute a normalized
metric of cerebral volume based on the Brain to IntraCranial Capacity
Ratio (BICCR).

This paper shows that the computation of BICCR using automated tech-
niques provides a highly reproducible measurement of relative brain tis-
sue volume that eliminates the need for precise repositioning. Initial re-
sults indicate that the measure is both robust and precise enough to
monitor MS patients over time to estimate brain atrophy. In addition,
brain atrophy may yield a more sensitive endpoint for treatment trials
in MS and possibly for other neuro-degenerative diseases such as Hunt-
ington’s or Alzheimer’s disease.

1 Introduction and previous work

A number of neuro-degenerative diseases are characterized by brain tissue loss.
For example, multiple sclerosis (MS) is a neurological disorder that predom-
inately affects young adults and is associated with recurrent attacks of focal
inflammatory demyelination (plaques) that cause neurological impairment, sep-
arated by periods of relative stability. It is difficult to evaluate the effect of
therapy in clinical trials of MS since it is a complex disease with a high degree of
variability in clinical signs and symptoms that vary over time and between indi-
viduals. The clinically accepted gold standard measure for burden of disease in
MS is the Kurztke Expanded Disability Status Scale (EDSS) [1]. Unfortunately,
this metric is highly variable between neurologists (large inter-rater variability),
is dependent on the timing of the test with respect to the latest exacerbation
of the disease and has a variable sensitivity to change depending on the degree
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of clinical disability. Taken together, these factors make it difficult to precisely
and accurately quantify the overall burden of disease. Therefore, large numbers
of subjects (hundreds) are required to participate in clinical trials for new drug
evaluation in order to have enough statistical power to detect oftentimes subtle
differences between treatment arms.

Our goal has been to develop an objective, automatic, robust image-based
method to quantify disease burden in MS. Our interest has turned to central
nervous system (CNS) atrophy since histopathological work has confirmed that
substantial axonal loss occurs in MS plaques [2] and recent quantitative work
has confirmed that CNS atrophy is greater in MS patients than in age-matched
normals [3-5].

We propose a fully automated, head-size normalized, brain-volume estima-
tion procedure. The BICCR metric is defined as ratio of brain tissue volume
to the total volume enclosed within the intra-cranial cavity. The volumes are
derived from the result of a tissue classification process. This metric is similar
to the brain parenchymal fraction (BPF) of Fisher [6] where BPF is defined as
the ratio of brain tissue volume to total volume enclosed by the brain surface.
The main difference is that all extra-cerebral CSF (i.e., CSF between the cortex
and dura, in addition to that in the sulci) is included in the BICCR measure.
We will show that the BICCR measure is better correlated with disability, and
thus may be a better surrogate for disease burden.

2 Methods

2.1 Data

Controls: Seventeen normal healthy controls (age range of 25-61 years) were re-
cruited from the staff, students and research fellows of the Montreal Neurological
Institute and McGill community.

Patients: Seventy patients with MS were selected from the population followed in
the Montreal Neurological Hospital MS clinic. Forty-eight patients were classified
as relapsing-remitting (RR), characterized by recurrent relapses with complete
or partial remission (disease duration 0.5 to 24 years, EDSS range 0-5.0, age
range 26-58). Twenty-two patients were classified as secondary progressive (SP),
characterized by progression in the absence of discrete relapses after earlier RR
disease (disease duration 4 to 36 years, EDSS range 3.5-9.0, age range 27-59
years).

MRI acquisistion: All MR data was acquired on a Philips Gyroscan operating at
1.5 T (Philips Medical Systems, Best, The Netherlands) using a standard head
coil and a transverse dual-echo, turbo spin-echo sequence, 256x256 matrix, 1
signal average, 250mm field of view, (TR/TE1/TE2 = 2075/32/90 ms) yielding
proton density-weighted (PDW) and T2-weighted (T2W) images. Fifty contigu-
ous 3mm slices were acquired approximately parallel to the line connecting the
anterior and posterior commissures (AC-PC line).



Brain volume in MS with BICCR 3

Non-uniform Stereotaxic o
Input | intensity correction | Corrected | registration | Registered | 'Normalization | normajizeq
image image image image
[

¢ Anisotropic

Filtered Tissue Atrophy diffusion
image Bayesian classes Masking and computation
classification volumes computation

Fig. 1. Diagram of the atrophy computation method stages.

2.2 Data analysis

Atrophy estimation The fully automated method uses MR images to quantify
brain atrophy and is based on estimation of the brain to intracranial capacity
ratio (BICCR). The method estimates the intracranial, brain parenchymal and
CSF volumes and uses these values in a ratio described below.

The technique is voxel-based. Each image voxel is classified as a brain tissue,
CSF or background. The number of voxels in each class multiplied by the ele-
mentary voxel volume gives an estimate of actual tissue and CSF volumes. As a
voxel-based approach, this method requires preliminary processing stages that
aim at correcting the image intensities by minimizing the bias and the noise due
to the acquisition device. Images are also registered in a common brain-based
coordinate space (Talairach) by a linear registration procedure. This ensures
that the scale differences between individuals are compensated for and that the
resulting atrophy measure is invariant to brain size.

Figure 1 diagrams the atrophy measure stages. The processing stages involve:

Intensity non-uniformity correction. The inhomogeneity of the MR acqui-
sition device magnetic field introduces a bias perceptible in images as a con-
tinuous variation of gray-level intensities. The non-uniform intensity correction
algorithm [7] iteratively proceeds by computing the image histogram and esti-
mating a smooth intensity mapping function that tends to sharpen peaks in
the histogram. The intensities for each tissue type thus have a tighter distribu-
tion and are relatively flat over the image volume. Application of this procedure
improves the accuracy of the tissue classification stage described below [7].
Stereotaxic registration. Each image is linearly registered in a common Ta-
lairach space in order to compensate for size variations between individuals.
Moreover, the Talairach-like brain-based coordinate system of stereotaxic space
facilitates anatomically driven data manipulation in all processing steps. The tar-
get image for stereotaxic registration is a template image built from an earlier
study [8] involving the averaging of more than 300 MR images. The registration
algorithm proceeds with a coarse-to-fine approach by registering subsampled and
blurred MRI volumes with the stereotaxic target [9]. The final data used for sub-
sequent processing is only resampled once to minimize resampling/interpolation
artefacts.
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Intensity normalization. In preparation for intensity-based classification, each
image is intensity normalized to an average PDW (PD-weighted) or T2W (T2-
weighted) target volume already in stereotaxic space. An affine intensity mapping
is estimated that best maps the histogram of each image onto the template. After
normalization, the histogram peaks corresponding to each tissue class have the
same value in all images. In conjuction with intensity non-uniformity correction,
this step permits data from all subjects to be classified using a single trained
classifier (i.e., the classifier does not have to be retrained for each subject).
Cropping. Since the entire cerebrum was not covered by the MRI acquisition
in all subjects, the inferior (2 < —22mm, in Talairach coordinates) and superi-
or (z > 58mm) slices were cropped away from both PDW and T2W volumes,
cutting off the very top of the brain (above the centrum semi-ovale) and the bot-
tom of the brain (just above the pons). This yielded an anatomically equivalent
80mm thick volume across all subjects that contains most of the cerebrum.
Anisotropic diffusion It has been shown that the application of an edge-
preserving noise filter can improve the accuracy and reliability of quantitative
measurements obtained from MRI [10,11]. We have selected anisotropic diffu-
sion, a filter commonly used for the reduction of noise in MRI. This type of filter
was pioneered by Perona and Malik [12] and generalized for multidimensional
and multispectral MRI processing by Gerig et al. [13]. This stage reduces voxel
misclassification due to noise and minimizes the speckled appearance sometimes
apparent in the resulting classified images.

Bayesian classification. A Bayesian classifier [14] is then used to identify all
grey-matter (GM), white-matter (WM), cerebrospinal fluid (CSF), lesion (L)
and background (BKG) voxels. Prior to classification, the Bayes classifier is
trained manually by selecting a set of 20 volumes randomly among all volumes
to be processed. From each sample volume, 50 voxels belonging to each class
are selected by hand. The resulting 5000 samples (20 volumes x 50 samples x
5 classes) were used to compute each class mean intensity and the covariance
matrices used in the Bayesian classifier.

Brain masking. Mathematical morphology [15] was used to eliminate the scalp
and meninges from further processing. A brain mask was created by applying
an opening operator (i.e., erosion followed by dilation) to the PDW volume after
thresholding at 40% of the mean PDW intensity value. Voxels remaining in the
regions of the eyes and nasal sinus were removed using a standard mask in
stereotaxic space. The resulting patient-specific brain mask was applied to both
the PDW and T2W volumes leaving all voxels within the intracranial cavity.
BICCR computation. After processing, the total volume of voxels in each
class was used to define the BICCR metric:

GM+WM+L

BICCR = G+ WM+ L+ CSF° (1)

It is is important to note that the value of CSF contains all extra-cerebral cere-
brospinal fluid within the cropped volume in addition to the ventricular and
sulcal components. Similar to the brain parenchymal fraction (BPF) of Fisher
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Fig. 2. Results: (a) box & whisker plot for comparison of BICCR mean values (heavy
circles) for NC, RR and SP groups; correlation of BICCR with age (b) and disease
duration (c) (RR=black circles, SP=grey squares).

and Rudick [6,4], the BICCR metric is a ratio and not only represents a size-
normalized index of brain atrophy but it also accounts for possible differences in
voxel size between scans due to scanner drift.

To determine the reproducibility of the method, 4 healthy volunteers were
scanned on 2 separate occasions over a mean period of 222 days. BICCR was
computed for each image set. Reproducibility was estimated by computing the
coefficient of variation of the repeated measures.

3 Results

The BICCR value for the normal control (NC, n=17) subjects was 86.1 £ 2.8
(mean + s.d.). The mean coefficient of variation estimated on scan-rescan tests
of 4 normal controls was 0.21%.

Comparison of the mean BICCR, values for the NC, RR and SP groups is
presented in Figure 2-a. An ANOVA showed a significant difference between
groups (F = 8.885,p < 0.001). A post-hoc test (Tukey’s HSD) showed that
BICCR was significantly lower in the secondary progressive group (81.3 £ 5.1)
than either the NC group (p < 0.001) or the relapsing-remitting group (84.5 +
4.3;p = 0.01). The Z-score (number of standard deviations from the mean of
healthy controls) was -0.673 for RR (not significantly different from NC) and -
1.864 (p < 0.001) for SP groups. The average absolute percentage of brain tissue
lost (compared to normal controls) was 1.8% for RR, and 5.6% for SP groups.

We looked at the relationship between BICCR with respect to age, disease
duration and EDSS. ANOVA showed no significant differences in age between
the NC, RR and SP groups (F' = 1.134,p = 0.327). As expected, the mean
duration of disease of the SP group was significantly greater than that for the
RR group (Student’s t = 3.88,p < 0.001). Also expected, disability (measured
by EDSS) was greater for the SP group when compared to that of the RR group
(t =11.43,p < 0.001).



6 D.L. Collins et al.

For the RR group, BICCR was correlated with disease duration (Spearman
r = —0.523,p < 0.001), but not with age, nor disability as measured by EDSS
(see Figs 2-b and -c). For the SP group, BICCR was correlated with disease du-
ration (Spearman r = —0.661, p < 0.001) and EDSS (Spearman r = —0.649,p <
0.001) but not with age. When evaluated over all patients with MS (RR and
SP combined), BICCR was correlated with EDSS (r = —0.409,p < 0.01) and
duration (r = —0.593,p < 0.0001).

The main difference between the BICCR and BPF metrics is the inclusion of
extra-cerebral CSF in the denominator. In a simple test to compare the corre-
lation of disability (measured by EDSS) with BICCR and a measure similar to
BPF, we used morphological operators to remove the extra-cerebral CSF voxels
from the BICCR metric. When evaluated on 20 SP MS patients, the magnitude
of the Spearman’s correlation coefficient dropped from -0.638 (BICCR) to -0.574
(modified BICCR).

4 Discussion

We have presented a robust procedure to estimate brain atrophy using a fully
automatic technique and have applied it to MRI data from normal controls and
patients with MS. We have confirmed that the brains of patients with MS have
greater atrophy when compared to normal controls, and that atrophy progresses
with the severity and duration of the disease.

Our procedure compares well to the BPF measure of Fisher [6]. The mean
BPF and BICCR values are similar for normal controls. However, the BPF
method is reported to have a very small intersubject variance when estimated
on normal controls (approximately 0.7%). This value is much smaller than the
variance for normal controls reported here. This may be due to subject selection
and the greater age range for our normal controls.

Another difference between the two techiques is that the classification proce-
dure used in the BPF computation accounts for partial volumes effects between
tissue classes, while the BICCR method uses a discrete classification result. While
this method should yield an unbiased result for objects that are larger than the
voxel size, the BICCR method may underestimate CSF volume in regions that
have dimensions on the order of the voxel size, in sulci for example.

The high precision of the BICCR method permits detection of small changes
( 0.5%) in brain volume (i.e., atrophy) in single subjects over a short period of
time (< 1 year). Comparison of BICCR with a BPF-like measure shows that
BICCR correlates better with disability, making it possibly a more sensitive
surrogate for disease burden. These results have important implications for the
design of clinical trials if atrophy is deemed an acceptable surrogate for burden
of disease in MS.

The fact that cerebral atrophy is generally correlated with irreversible neuro-
logical dysfunction make atrophy an important surrogate to evaluate in MS using
state of the art image analysis techniques. Characterization of brain atrophy will
yield information complementary to other MR-based measures of focal and dif-
fuse abnormality with varying specificity for underlying pathological changes.
Brain atrophy may yield a more sensitive endpoint for treatment trials in MS
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and possibly also for other neurdegenerative diseases such as Huntington’s or
Alzheimer’s disease.
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