Skip to main content

Spatio-Temporal Covariance Model for Medical Images Sequences: Application to Functional MRI Data

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

  • 1330 Accesses

Abstract

Spatial and temporal correlations which affect the signal measured in functional MRI (fMRI) are usually not considered simultaneously (i.e., as non-independent random processes) in statistical methods dedicated to detecting cerebral activation.We propose a new method for modeling the covariance of a stationary spatio-temporal random process and apply this approach to fMRI data analysis. For doing so, we introduce a multivariate regression model which takes simultaneously the spatial and temporal correlations into account. We show that an experimental variogram of the regression error process can be fitted to a valid nonseparable spatio-temporal covariance model. This yields a more robust estimation of the intrinsic spatio-temporal covariance of the error process and allows a better modeling of the properties of the random fluctuations affecting the hemodynamic signal. The practical relevance of our model is illustrated using real event-related fMRI experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Friston K.J., Jezzard P., Turner R.: Analysis of functional MRI time-series. Hum. Brain Mapp. 1 (1994) 153–171

    Article  Google Scholar 

  2. Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J., Evans A.C.: A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4 (1996) 58–73

    Article  Google Scholar 

  3. Bullmore E., Brammer M., Williams S.C.R., Rabe-Hesketh S., Janot N., David A., Mellers J., Howard R., Sham P.: Statistical methods of estimation and inference for functional MR image analysis. Magn. Reson. Med. 35 (1996) 261–277

    Article  Google Scholar 

  4. Benali H., Buvat I., Anton J.L., Pélégrini M., Di Paola M., Bittoun J., Burnod Y., Di Paola R.: Space-time statistical model for functional MRI image sequences. In: Duncan J., Gindi G. (eds.): Information Processing in Medical Imaging. Springer-Verlag, Berlin (1997) 285–298

    Google Scholar 

  5. Friston K.J., Josephs O., Zarahn E., Holmes A.P., Rouquette S., Poline J.B.: To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. NeuroImage 12 (2000) 196–208

    Article  Google Scholar 

  6. Kruggel F., von Cramon D.Y.: Temporal properties of the hemodynamic response in functional MRI. Hum. Brain Mapp. 8 (1999) 259–271

    Article  Google Scholar 

  7. Seber G.A.F.: Linear regression analysis. John Wiley & Sons, New York (1977)

    MATH  Google Scholar 

  8. Cressie N., Huang H.C.: Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94 (1999) 1330–1340

    Article  MATH  MathSciNet  Google Scholar 

  9. Bochner S.: Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley (1955)

    MATH  Google Scholar 

  10. Kruggel F., Benali H., Pélégrini-Issac M.: Estimating the effective degrees of freedom in univariate multiple regression analysis. Submitted (2001)

    Google Scholar 

  11. Cressie N.A.C.: Statistics for Spatial Data, rev. edn. John Wiley & Sons Inc., New York (1993)

    Google Scholar 

  12. Kruggel F., Zysset S., von Cramon D.Y.: Nonlinear regression functional MRI data: an item-recognition task study. NeuroImage 11 (2000) 173–183

    Article  Google Scholar 

  13. Worsley K.J., Poline J.B., Friston K.J., Evans A.C.: Characterizing the response of PET and fMRI data using Multivariate Linear Models. NeuroImage 6 (1997) 305–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benali, H., Pélégrini-Issac, M., Kruggel, F. (2001). Spatio-Temporal Covariance Model for Medical Images Sequences: Application to Functional MRI Data. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics