Skip to main content

Estimability of Spatio-Temporal Activation in fMRI

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

Abstract

Event-related functional magnetic resonance imaging (fMRI) is considered as an estimation and reconstruction problem. A linear model of the fMRI system based on the Fourier sampler (k-space) approximation is introduced and used to examine what parameters of the activation are estimable, i.e. can be accurately reconstructed in the noisefree limit. Several possible spatio-temporal representations of the activation are decomposed into null and measurement components. A causal representation of the activation using generalized Laguerre polynomials is introduced.

Acknowledgements

We thank Angel Pineda for valuable discussions. This work was supported by NIH grants R01 CA52643 and P41 RR14304. A.L. was supported by NSF grant VIGRE 9977116.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. USG overnment Printing Office, Washington, DC, 1964.

    MATH  Google Scholar 

  2. A. E. Albert. Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York, 1972.

    MATH  Google Scholar 

  3. H. H. Barrett and K. J. Myers. Foundations of Image Science. Wiley, expected 2001.

    Google Scholar 

  4. M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol, 1998.

    MATH  Google Scholar 

  5. G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger. Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16(13):4207–4221, July 1996.

    Google Scholar 

  6. M. H. Buonocore, W. R. Brody, and A. Macovski. A natural pixel decomposition for two-dimensional image reconstruction. IEEE Transactions on Biomedical Engineering, 28(2):69–78, Feb. 1981.

    Article  Google Scholar 

  7. E. Clarkson and H. Barrett. Bounds on null functions of linear digital imaging systems. Journal of the Optical Society of America A-Optics, Image-Science and Vision, 15(5):1355–1360, May 1998.

    Article  MathSciNet  Google Scholar 

  8. T. Q. Duong, D.-S. Kim, K. Uğurbil, and S.-G. Kim. Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response. Magnetic Resonance in Medicine, 44(2):231–242, Aug. 2000.

    Article  Google Scholar 

  9. K. M. Hanson and G. W. Wecksung. Local basis-function approach to computed tomography. Applied Optics, 24(23):4028-39, Dec. 1985.

    Google Scholar 

  10. O. Josephs and R. N. A. Henson. Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 354(1387):1215–1228, July 1999.

    Article  Google Scholar 

  11. R. M. Lewitt. Multidimensional digital image representations using generalized Kaiser-Bessel window functions. Journal of the Optical Society of America A-Optics, Image-Science and Vision, 7(10):1834–1846, Oct. 1990.

    Article  Google Scholar 

  12. Z.-P. Liang and P. C. Lauterbur. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. IEEE Press, New York, 1999.

    Google Scholar 

  13. D. G. Nishimura. Principles of Magnetic Resonance Imaging. Published by the author, 1996.

    Google Scholar 

  14. L. Shepp and C.-H. Zhang. Fast functional magnetic resonance imaging via prolate wavelets. Applied and Computational Harmonic Analysis, 9(2):99–119, Sept. 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. W. Toga and J. C. Mazziotta, editors. Brain Mapping: The Methods. Academic Press, San Diego, 1996.

    Google Scholar 

  16. R. Van de Walle, H. H. Barrett, K. J. Myers, M. I. Altbach, B. Desplanques, A. F. Gmitro, J. Cornelis, and I. Lemahieu. Reconstruction of MR images from data acquired on a general non-regular grid by pseudoinverse calculation. IEEE Transactions on Medical Imaging, 19(12):1160–1167, Dec. 2000.

    Article  Google Scholar 

  17. D. W. Wilson and H. H. Barrett. Decomposition of images and objects into measurement and null components. Optics Express, 2(6):254–260, Mar. 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehovich, A., Barrett, H.H., Clarkson, E.W., Gmitro, A.F. (2001). Estimability of Spatio-Temporal Activation in fMRI. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics