Skip to main content

Validation of Non-rigid Registration Using Finite Element Methods

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Abstract

We present a novel validation method for non-rigid registration using a simulation of deformations based on biomechanical modelling of tissue properties. This method is tested on a previously developed non-rigid registration method for dynamic contrast enhanced Magnetic Resonance (MR) mammography image pairs [1]. We have constructed finite element breast models and applied a range of displacements to them, with an emphasis on generating physically plausible deformations which may occur during normal patient scanning procedures. From the finite element method (FEM) solutions, we have generated a set of deformed contrast enhanced images against which we have registered the original dynamic image pairs. The registration results have been successfully validated at all breast tissue locations by comparing the recovered displacements with the biomechanical displacements. The validation method presented in this paper is an important tool to provide biomechanical gold standard deformations for registration error quantification, which may also form the basis to improve and compare different non-rigid registration techniques for a diversity of medical applications.

Acknowledgements

The authors would like to thank Dr. Luke Sonoda from CISG, and Dr. Erica Denton and Dr. Sheila Rankin from Guy’s Hospital for access to the image database, Dr. Frans Gerritsen and Marcel Quist from Philips Medical Systems, Dr. Daniel Rueckert from Imperial College London for useful discussions, and Dr. Philippe Batchelor from CISG and Justin Penrose from the University of Sheffield for their help in the model construction. The work on biomechanical tissue modelling using ANSYS was funded by EPSRC, and segmentations were carried out using ANALYZE. JAS has received funding from Philips Medical Systems, EasyVision Advanced Development. CT and ADCS have received funding from EPSRC grants GR/M52779 and GR/M47294, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Non-rigid registration using Free-Form Deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18 (8):712–721, 1999.

    Article  Google Scholar 

  2. C. Studholme, D. L. G. Hill, and D. J. Hawkes. Automated 3D registration of MR and PET brain images by multi-resolution optimisation of voxel similarity measures. Medical Physics, 24:25–35, 1999.

    Article  Google Scholar 

  3. M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, T. Rohlfing, J. Goodey, and D. J. Hawkes. Voxel similarity measures for 3D serial MR brain image registration. IEEE Transactions on Medical Imaging, 19(2):94–102, 2000.

    Article  Google Scholar 

  4. J. M. Fitzpatrick, D. L. G. Hill, Y. Shyr, J. West, C. Studholme, and C. R. Maurer Jr. Visual assessment of the accuracy of retrospective registration of MR and CT images of the brain. IEEE Transactions on Medical Imaging, 17:571–585, 1998.

    Article  Google Scholar 

  5. E. R. E. Denton, L. I. Sonoda, D. Rueckert, S. C. Rankin, C. Hayes, M. Leach, D. L. G. Hill, and D. J. Hawkes. Comparison and evaluation of rigid and non-rigid registration of breast MR images. Journal of Computer Assisted Tomography, 23(5):800–805, 1999.

    Article  Google Scholar 

  6. J. West et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography, 21(4):554–566, 1997.

    Article  Google Scholar 

  7. K. C. Chu and B. K. Rutt. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magnetic Resonance in Medicine, 37:314–319, 1997.

    Article  Google Scholar 

  8. K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elastic registration: integration of landmark errors and orientation attributes. In A. Kuba, M. Samal, and A. Todd-Pokropek, editors, Information Processing in Medical Imaging: Proc. 16th International Conference (IPMI’99), volume 1613 of Lecture Notes in Computer Science, pages 252–265. Springer Verlag, 1999.

    Chapter  Google Scholar 

  9. C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap entropy measure of 3D medical image alignment. Pattern Recognition, 32:71–86, 1999.

    Article  Google Scholar 

  10. C. Tanner, J. A. Schnabel, D. Chung, M. J. Clarkson, D. Rueckert, D. L. G. Hill, and D. J. Hawkes. Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing MR breast images. In S. L. Delp, A. M. DiGioia, and B. Jaramaz, editors, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2000, volume 1935 of Lecture Notes in Computer Science, pages 327–337. Springer Verlag, 2000.

    Google Scholar 

  11. M. I. Miga, K. D. Paulsen, J. M. Lemery, S. D. Eisner, A. H. Hartov, F. E. Kennedy, and D. W. Roberts. Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Transactions on Medical Imaging, 18(10):866–874, 1999.

    Article  Google Scholar 

  12. A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach. Biomechanical modelling of the human head for physically based, nonrigid image registration. IEEE Transactions on Medical Imaging, 18(10):875–884, 1999.

    Article  Google Scholar 

  13. M. Ferrant, S. K. Warfield, A. Nabavi, F. A. Jolesz, and R. Kikinis. Registration of 3D intraoperative MR images of the brain using a finite element biomechanical model. In S. L. Delp, A. M. DiGioia, and B. Jaramaz, editors, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2000, volume 1935 of Lecture Notes in Computer Science, pages 19–28. Springer Verlag, 2000.

    Google Scholar 

  14. F. S. Azar, D. N. Metaxas, and M. D. Schall. A finite model of the breast for predicting mechanical deformations during biopsy procedure. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 38–45. IEEE, 2000.

    Google Scholar 

  15. A. Samani, J. Bishop, M. J. Yaffe, and D. B. Plewes. Biomechanical 3D Finite Element Modeling of the human breast using MRI data. Technical report, Dept. of Medical Biophysics, Sunnybrook and Women’s College Health Sciences Centre, Toronto, CA, 2000. Submitted.

    Google Scholar 

  16. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz. High-resolution tensor MR elastography for breast tumour detection. Physics in Medicine and Biology, 45:1649–1664, 2000.

    Article  Google Scholar 

  17. D. B. Plewes, J. Bishop, A. Samani, and J. Sciaretta. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Physics in Medicine and Biology, 45:1591–1610, 2000.

    Article  Google Scholar 

  18. M. M. Doyley, P. M. Meaney, and J. C. Bamber. Evaluation of an iterative reconstruction method for quantitative elastography. Physics in Medicine and Biology, 45:1521–1539, 2000.

    Article  Google Scholar 

  19. A. Sarvazyan, D. Goukassian, E. Maevsky, and G. Oranskaja. Elastic imaging as a new modality of medical imaging for cancer detection. In Proc. International Workshop on Interaction of Ultrasound with Biological Media, pages 69–81, 1994.

    Google Scholar 

  20. J. B. Park. Biomaterials Science and Engineering. Plenum Press, 1984.

    Google Scholar 

  21. K. Brakke. The Surface Evolver. Experimental Mathematics, 1(2):141–165, 1992.

    MATH  MathSciNet  Google Scholar 

  22. ANSYS. http://www.ansys.com

  23. S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):228–244, 1997.

    Article  Google Scholar 

  24. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall. E lastic moduli of breast and prostrate tissues under compression. Ultrasonic Imaging, 20:260–274, 1998.

    Google Scholar 

  25. P. S. Wellman. Tactile Imaging. PhD thesis, Harvard University, 1999.

    Google Scholar 

  26. A. J. Davis. The Finite Element Method: A First Approach. Oxford University Press, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelber

About this paper

Cite this paper

Schnabel, J.A. et al. (2001). Validation of Non-rigid Registration Using Finite Element Methods. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics