Skip to main content

Statistical Study on Cortical Sulci of Human Brains

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

  • 1316 Accesses

Abstract

A method for building a statistical shape model of sulci of the human brain cortex is described. The model includes sulcal fundi that are defined on a spherical map of the cortex. The sulcal fundi are first extracted in a semi-automatic way using an extension of the fast marching method. They are then transformed to curves on the unit sphere via a conformal mapping method that maps each cortical point to a point on the unit sphere. The curves that represent sulcal fundi are parameterized with piecewise constant-speed parameterizations. Intermediate points on these curves correspond to sulcal landmarks, which are used to build a point distribution model on the unit sphere. Statistical information of local properties of the sulci, such as curvature and depth, are embedded in the model. Experimental results are presented to show how the models are built.

Acknowledgments

This work was partially supported by NIH grant R01AG14971, NIH contract N01AG32129, NIH grant R01NS37747 and NSF/ERC grant CISST#9731748. The authors would like to acknowledge the Baltimore Longitudinal Study of Aging which provided the datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-F. Mangin, V. Frouin, I. Bloch, J. Regis and J. Lopez-Krahe, “From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations,” J. Math. Imag. Vis., vol. 5, pp. 297–318, Dec. 1995.

    Article  Google Scholar 

  2. D. C. Van Essen and J. H. R. Maunsell, “Two dimensional maps of cerebral cortex,” J. Comp. Neurol., vol. 191, no. 2, pp. 255–281, 1980.

    Article  Google Scholar 

  3. H. A. Drury, D. C. Van Essen, C. H. Anderson, C. W. Lee, T. A. Coogan and J. W. Lewis, “Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system”, J. Cogn. Neurosci., vol. 8, no. 1, pp. 1–28, Jan. 1996.

    Article  Google Scholar 

  4. A. M. Dale, B. Fischl and M. I. Sereno, “Cortical surface-based analysis I: Segmentation and surface reconstruction,” Neuroimage, vol. 9, no. 2, pp. 179–194, Feb. 1999.

    Article  Google Scholar 

  5. S. Angenent, S. Haker, A. Tannenbaum and R. Kikinis, “On the Laplace-Beltrami Operator and Brain Surface Flattening”, IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 700–711, Aug. 1999.

    Article  Google Scholar 

  6. D. Tosun and J. L. Prince, “A Hemispherical Map for the Human Brain Cortex”, Proc. of SPIE Conf. on Medical Imaging, to appear, 2001.

    Google Scholar 

  7. G. Lohmann, F. Kruggel and D. Y. von Cramon, “Automatic detection of sulcal bottom lines in MR images of human brain”, Proc. of Information Processing in Medical Imaging (IPMI), pp. 369–374, 1997.

    Google Scholar 

  8. M. Vaillant and A. Davatzikos, “Finding parametric representations of the cortical sulci using an active contour model”, Medical Image Analysis, vol. 1, no. 4, pp. 295–315, 1997.

    Article  Google Scholar 

  9. G. Le Goualher, D. L. Collins, C. Barillot and A. C. Evans, “Automatic Identification of Cortical Sulci Using a 3D Probabilistic Atlas”, Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 509–517, Springer, 1998.

    Google Scholar 

  10. P. M. Thompson, C. Schwartz and A. W. Toga, “High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain”, Neuroimage, vol. 3, no. 1, pp. 19–34, Feb. 1996.

    Article  Google Scholar 

  11. X. Zeng, L. H. Staib, R. T. Schultz, H. Tagare, L. Win and J. S. Duncan, “A New Approach to 3D Sulcal Ribbon Finding from MR Images”, Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 148–157, Springer, 1999.

    Google Scholar 

  12. M. Vaillant and A. Davatzikos, “Hierarchical Matching of Cortical Features for Deformable Brain Image Registration”, Proc. of Information Processing in Medical Imaging (IPMI), pp. 182–195, Springer, 1999.

    Google Scholar 

  13. B. Fischl, M. I. Sereno, and A. M. Dale, “Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system,” Neuroimage, vol. 9, pp. 195–207, 1999.

    Article  Google Scholar 

  14. A. Caunce and C. J. Taylor, “Using local geometry to build 3D sulcal models”, Proc. of Information Processing in Medical Imaging (IPMI), pp. 196–209, Springer, 1999.

    Google Scholar 

  15. H. Chui, J. Rambo, J. Duncan, R. Schultz and A. Rangarajan, “Registration of Cortical Anatomical Structures via Robust 3D Point Matching”, Proc. of Information Processing in Medical Imaging (IPMI), pp. 168–181, Springer, 1999.

    Google Scholar 

  16. N. Royackkers, M. Desvignes, H. Fawal and M. Revenu, “Detection and Statistical Analysis of Human Cortical Sulci”, Neuroimage, vol. 10, pp. 625–641, 1999.

    Google Scholar 

  17. R. Kimmel and J. A. Sethian, “Computing Geodesic Paths on Manifolds”, Proceedings of National Academy of Sciences, vol. 95, no. 15, pp. 8431–8435, 1998.

    MATH  MathSciNet  Google Scholar 

  18. C. Xu, D. L. Pham, M. E. Rettmann, D. N. Yu, and J. L. Prince, “Reconstruction of the human cerebral cortex from magnetic resonance images,” IEEE Trans. Med. Imag., vol. 18, no. 6, pp. 467–480, June 1999.

    Article  Google Scholar 

  19. I. L. Dryden and K. V. Mardia, Statistical Shape Analysis, JOHNWILEY & SONS, New York, NY, 1998.

    MATH  Google Scholar 

  20. D. Shen and C. Davatzikos, “Adaptive-Focus Statistical Shape Model for Segmentation of 3D MR Structures”, Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 206–215, Springer, 2000.

    Google Scholar 

  21. T. F. Cootes and C. J. Taylor, “The Use of Active Shape Models for Locating Structures in Medical Images”, Proc. of Information Processing in Medical Imaging (IPMI), pp. 33–47, Springer, 1993.

    Google Scholar 

  22. J. Declerck, G. Subsol, J.P. Thirion and N. Ayache, “Automatic retrieval of anatomical structure in 3D medical images”, Proc. of CVRMed'95, pp. 153–162, 1995.

    Google Scholar 

  23. N. Khaneja, M. I. Miller and U. Grenander, “Dynamic programming generation of curves on brain surfaces”, IEEE Trans. on Pattern Anal. Machine Intell., vol. 20, no. 11, pp. 1260–1265, Nov. 1998.

    Article  Google Scholar 

  24. G. Lohmann, “Extracting Line Representations of Sulcal and Gyral Patterns in MR Images of the Human Brain”, IEEE Trans. on Medical Imaging, vol. 17, no. 6, pp. 1040–1048, Dec. 1998.

    Article  Google Scholar 

  25. M. E. Rettmann, C. Xu, D. L. Pham and J. L. Prince, “Automated Segmentation of Sulcal Regions”, Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 158–165, Springer, 1999.

    Google Scholar 

  26. M. E. Rettmann, X. Han, C. Xu and J. L. Prince, “Watersheds on the cortical surface for automated sulcal segmentation”, Proc. of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 20–27, 2000.

    Google Scholar 

  27. H. M. Duvernoy, “The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply”, Springer, 1999.

    Google Scholar 

  28. D. Shen and C. Davatzikos, “An adaptive-focus deformable model using statistical and geometric information”, IEEE Trans. on Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 906–913, Aug. 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, X., Han, X., Rettmann, M.E., Prince, J.L., Davatzikos, C. (2001). Statistical Study on Cortical Sulci of Human Brains. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics