Abstract
A method for regularizing diffusion tensor magnetic resonance images (DT-MRI) is presented. The scheme is divided into two main parts: a restoration of the principal diffusion direction, and a regularization of the 3 eigenvalue maps. The former make use of recent variational methods for restoring direction maps, while the latter makes use of the strong structural information embedded in the diffusion tensor image to drive a non-linear anisotropic diffusion process. The whole process is illustrated on synthetic and real data, and possible improvements are discussed.
Acknowledgements
OC is funded by the Wellcome Trust. Images were kindly provided by Geoff Parker, Imaging Science and Biomedical Engineering, University of Manchester, and the NMR research unit of the Institute of Neurology, London. All 3D renderings were done using the Visualisation Toolkit (VTK - http://www.kitware.com).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor images. To appear in IEEE Trans. on Medical Imaging (2001)
Almansa, A., Lindeberg, T.: Enhancement of fingerprint images using shapeadapted scale-space operators. In Sporring, J., Nielsen, M., Florack, L., Johansen, P., editors, Gaussian Scale-Space Theory, Kluwer-Academic (1997) 3–19
Basser, P.J., Matiello, J., LeBihan, D.: MR Diffusion tensor spectroscopy and imaging. Biophysical Journal 66 (1994) 259–267
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B 111 (1996) 209–219
Basser, P.J., Pajevic, S.: Statistical artefacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magnetic Resonance in Medicine 44 (2000) 41–50
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44 (2000) 625–632
Chan, T., Shen, J.: Variational restoration of non-flat image features: model and algorithm. Technical Report CAM-TR 99-20, UCLA (1999)
Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain.Proc. Natl. Acad. Sci. USA 96 (1999) 10422–10427
Cottet, G.H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Mathematics of Computation 61:204 (1993) 659–673
Deriche, R., Faugeras, O.: Les EDP en traitement des images et vision par ordinateur. Technical Report 2697, INRIA (1995)
Krissian, K., Malandain, G., Ayache, N.: Directional anisotropic diffusion applied to segmentation of vessels in 3D images. In Scale-Space’97, LNCS 1252, Springer-Verlag (1997) 345–348
Lindeberg, T., Garding, J.: Shape-adpated smoothing in estimation of 3D depth cues from affine distortions of local 2D brightness structure. Image and Vision Computing 15 (1997) 415–434
Parker, G.J.M., Schnabel, J.A., Symms, M.R., Werring., D.J., Barker, G.J.: Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. Journal of Magnetic Resonance Imaging 11 (2000) 702–710
Parker, G.J.M., Wheeler-Kingshott, C.A., Barker, G.J.: Distributed anatomical brain connectivity derived from diffusion tensor imaging. In IPMI’2001, Springer-Verlag (2001).
Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine 36 (1996) 893–906
Perona, P.: Orientation diffusion. IEEE Trans. on Image Processing 7(3) (1998) 457–467
Poupon, C., Clark, C.A., Frouin, V., Régis, J., Bloch, I., Le Bihan, D., Mangin, J.-F.: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12 (2000) 184–195
Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit. An object oriented approach to 3D graphics, 2nd edition. Prentice Hall (1998)
Tang, B., Sapiro, G., Caselles, V.: Color image enhancement via chromaticity diffusion. Technical Report, ECE-University of Minensota (1999)
Tang, B., Sapiro, G., Caselles, V.: Diffusion of general data on non-flat manifolds via harmonic maps theory: the direction diffusion case. International Journal of Computer Vision 36(2) (2000) 149–161
Weickert, J.: A review of non-linear diffusion filtering. In ScaleSpace’97, LNCS 1252, Springer-Verlag (1997) 3–28
Weickert, J.: Anisotropic diffusion in image processing. B.G. Teubner, Stuttgart (1998)
Weickert, J.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision 31(2/3) (1999) 111–127
Weickert, J.: Coherence-enhancing diffusion of colour images. Image and Vision Computing 17 (1999) 201–212
Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimised rotation invariance. To appear in J. of Visual Communication and Image Representation (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coulon, O., Alexander, D.C., Arridge, S.R. (2001). A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_8
Download citation
DOI: https://doi.org/10.1007/3-540-45729-1_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42245-7
Online ISBN: 978-3-540-45729-9
eBook Packages: Springer Book Archive