Skip to main content

More On Implicit Syntax

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2083))

Included in the following conference series:

  • 786 Accesses

Abstract

Proof assistants based on type theories, such as COQ and Lego, allow users to omit subterms on input that can be inferred automatically. While those mechanisms are well known, ad-hoc algorithms are used to suppress subterms on output. As a result, terms might be printed identically although they differ in hidden parts. Such ambiguous representations may confuse users. Additionally, terms might be rejected by the type checker because the printer has erased too much type information. This paper addresses these problems by proposing effective erasure methods that guarantee successful term reconstruction, similar to the ones developed for the compression of proof-terms in Proof-Carrying Code environments. Experiences with the implementation in Typelab proved them both efficient and practical.

This research has partly been supported by the “Deutsche Forschungsgemeinschaft” within the “Schwerpunktprogramm Deduktion”.

Acknowledgments

I thank Martin Strecker for developing large parts of the Typelab system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Barras et al. The Coq proof assistant reference manual-Version 6.3.1. Technical report, INRIA, France, 1999.

    Google Scholar 

  2. S. Berghofer, T. Nipkow. Proof terms for simply typed higher order logic. In Proc. of TPHOLs’00, volume 1869 of LNCS, pp. 38–53. Springer, 2000.

    Google Scholar 

  3. Th. Coquand, G. Huet. The Calculus of Constructions. Information and Computation, 76(2/3):95–120, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Geuvers. The Church-Rosser property for βη-reduction in typed λ-calculi. In Proc. of LICS’92, pp. 453–460. IEEE Press, 1992.

    Google Scholar 

  5. W. O. D. Griffoen, M. Huisman. A comparison of PVS and Isabelle/HOL. In Proc. of TPHOLs’98, volume 1479 of LNCS, pp. 123–142. Springer, 1998.

    Google Scholar 

  6. W. Goldfarb. The undecidability of the second-order unification problem. Theoretical Computer Science, 13:225–230, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hagiya, Y. Toda. On implicit arguments. Technical Report TR-95-1, Department of Information Science, University of Tokyo, 1995.

    Google Scholar 

  8. G. Huet. The Constructive Engine. In A Perspective in Theoretical Computer Science. World Scientific Publishing, Singapore, 1989.

    Google Scholar 

  9. Z. Luo, R. Pollack. LEGO Proof Development System. University of Edinburgh, 1992. Technical Report ECS-LFCS-92-211.

    Google Scholar 

  10. O. Lee, K. Yi. Proofs about a folklore let-polymorphic type inference algorithm. ACM TOPLAS, 20(4):707–723, 1998.

    Article  Google Scholar 

  11. D. Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. J. Logic Comput., 1(4):497–536, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Miquel. The implicit calculus of constructions. In Proc. of the Conf. TLCA’01, Krakow, Poland, May 2-5, 2001, LNCS. Springer, Berlin, 2001.

    Google Scholar 

  13. C. Muñoz. Proof-term synthesis on dependent-type systems via explicit substitutions. Theoretical Computer Science, 2001. To appear.

    Google Scholar 

  14. G. Necula, P. Lee. Efficient representation and validation of proofs. In Proc. of LICS’98, pp. 93–104. IEEE Press, 1998.

    Google Scholar 

  15. R. Pollack. Implicit syntax. In G. Huet, G. Plotkin, eds., Informal Proc. Of the 1st Workshop on Logical Frameworks (LF’90), Antibes. 1990.

    Google Scholar 

  16. F. Pfenning, C. Schürmann. Algorithms for equality and unification in the presence of notational definitions. In T. Altenkirch, W. Naraschewski, B. Reus, eds., Proc. of TYPES’98, volume 1657 of LNCS, pp. 179–193. Springer, 1999.

    Google Scholar 

  17. B. Pierce, D. Turner. Local type inference. In Conf. Record of POPL’98, pp. 252–265. ACM Press, 1998.

    Google Scholar 

  18. M. Strecker, M. Luther, F. von Henke. Interactive and automated proof construction in type theory. In W. Bibel, P. Schmitt, eds., Automated Deduction — A Basis for Applications, volume I, chapter 3. Kluwer, 1998.

    Google Scholar 

  19. M. Strecker. Construction and Deduction in Type Theories. Ph. D. thesis, Fakultôt für Informatik, Universitôt Ulm, 1999. http://www.informatik.uni-ulm.de/ki/Strecker/phd.html

    Google Scholar 

  20. F. von Henke, M. Luther, M. Strecker. Typelab: An environment for modular program development. In M. Bidoit, M. Dauchet, eds., Proc. of the 7th Intl. Conf. TAPSOFT’97, volume 1214 of LNCS, pp. 851–854. Springer, 1997.

    Google Scholar 

  21. J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Ann. Pure ℰ Appl. Logics, 98(1-3):111–156, 1999.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luther, M. (2001). More On Implicit Syntax. In: Goré, R., Leitsch, A., Nipkow, T. (eds) Automated Reasoning. IJCAR 2001. Lecture Notes in Computer Science, vol 2083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45744-5_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45744-5_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42254-9

  • Online ISBN: 978-3-540-45744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics