Self-Organizing Subsets: From Each According to His Abilities,
To Each According to His Needs

Amin Vahdat, Jeff Chase, Rebecca Braynard,
Dejan Kostc, Patrick Reynolds, and Adolfo Rodriguez
Department of Computer Science
Duke University
{vahdat,chase,rebecca,dkostic,reynolds,ra@cs.duke.edu

Abstract 1 Introduction

Peer-to-peer principles are fundamental to the con-
The key principles behind current peer-to-peer researdiypt of survivable, massive-scale Internet services
include fully distributing service functionality among all incorporating large numbers—potentially billions—
nodes participating in the system and routing individua)s heterogeneous hosts. Most recent peer-to-peer re-
requests based on a small amount of locally maintainggarch systems distribute service functions (such as
state. The goals extend much further than just impro‘étorage or indexing) evenly across all participating
ing raw system performance: such systems must surviygydes [3, 4, 5,6,7,9, 10]. At a high level, many
massive concurrent failures, denial of service attacks, el§f these efforts use a distributed hash table, with re-
These efforts are uncovering fundamental issues in t'&?ons of the table mapped to each participant. The
design and deployment of distributed services. HOWChaIIenge then is to locate the remote host respon-
ever, the work ignores a number of practical issues witBjpe for a target region of the hash space in a scal-
the deployment of general peer-to-peer systems, includy)|e manner, while: i) adapting to changes in group
ing i) the overhead of maintaining consistency amongyempership, ii) achieving locality with the under-
peers replicating mutable data and ii) the resource Waslﬂ‘ﬁng IP network, and iii) caching content and/or

incurred by the replication necessary to counteract ”}Pequest routing state so as to minimize the average
loss in locality that results from random content distribun,mper of hops to satisfy a request.

tion. This position paper argues that the key challenge in These recent efforts constitute important basic re-

peer-to-peer research is not to distribute service functior%%arch in massively decentralized systems, and they

among all participants, but rather to distribute function%a\/e produced elegant solutions to challenging and
to meet target levels of availability, survivability, and per'interesting problems. However, these approaches

formance. In many cases, only a subset of IC)artidp:’mn?eek massive decentralization as an end in itself
hosts should take on server roles. The benefit of PEElther than as a means to the end of devising practi-
to-peer archltectgres then cor.nes. from .maS.SIve d'Vers_'EVaI service architectures that are scalable, available,
rather than massive decentralization: with high probabllémd survivable. From a practical standpoint, they ad-

ity, there is always some node available to provide tharess the wrong set of issues in peer-to-peer comput-
required functionality should the need arise. ing

We suggest that distributing service functions
across a carefully selected subset of nodes will yield
“This research is supported in part by the National Sciendgetter performance, availability, and scalability than

Foundation (EIA-9972879, ITR-0082912), Hewlett-Packard ; ;)
IBM, Intel, and Microsoft. Braynard and Reynolds are sup-masswer decentralized approaches. The true op

ported by an NSF graduate fellowships and Vahdat is also suElOftun?t_y afforded by pger—to—peer systems is n(_Jt
ported by an NSF CAREER award (CCR-9984328). the ability to put everything everywhere. Rather, it

is the opportunity to put anything anywhere. Whypeer-to-peer systems typically grow with(lgn) at
distribute an index across one million nodes whebest. While this may qualify as “scalable,” it still im-
a well-chosen subset of one thousand can provigmses significant overhead even for systems of mod-
the resources to meet target levels of service perfoest size. Using only a subset of the available hosts
mance and availability? reduces this overhead. More importantly, massively
Givenn participants in a peer-to-peer system, welecentralized structures may be limited to services
argue that the best approach is not to evenly spreadth little or no mutable state (e.g., immutable file
functionality across ath nodes, but rather to select asharing), since coordination of updates quickly be-
minimal subset ofn nodes to host the service func-comes intractable. Our recent study of availabil-
tions. This choice should reflect service load, nody [11] shows that services with mutable state may
resources, predicted stability, and network charasuffer from too much replication: adding replicas
teristics, as well as overall system performance anday compromise availability rather than improve it.
availability targets. While it may turn out that = Random distribution of functionality among replicas
n in some cases, we believe that < n in most means that more replicas are required to deliver the
cases. Membership in the service subset and tsame level of performance and availability. Thus,
mapping of service functions must adapt automatihere is an interesting tension between the locality
cally to changes in load, participant set, node statuand availability improvements on the one hand and
and network conditions, all of which may be highlythe degradation on the other that comes from repli-
dynamic. Thus we refer to this approach for peer-toeation of mutable data in peer to peer systems. A
peer systems aelf-organizing subsets primary goal of our work is to show theesource
One goal of our work is to determine the approwastethat comes from random distribution, i.e., the
priate subsetyn, of replicas required to deliver tar- inflation in the number of randomly placed repli-
get levels of application performance and availabileas required to deliver the same levels of perfor-
ity. The ratio of subset sizex to the total number of mance and availability as a smaller number of “well-
nodesn can approximately be characterized by: placed” replicas. Finally, massively decentralized
approaches are not sufficiently sensitive to the rapid
m u status changes of a large subset of the client popu-
— = =5 lation. We propose to restrict service functions to
n dE e .
subsets of nodes with significantly better connectiv-
whereu is the sum of all service resources consumeitly and availability than the median, leading to im-
by then total hosts,d is the sum of all service re- proved stability of group membership.
sources provided by thex hosts in the subset, and

E is the efficiency — the fraction of resources in Our approach adapts Marxist ideology—from

each according to his abilities, to each according to

se when the system as a whole begins to become :
gver;,(\)/aded Effi)(/:ienc is a f\tljvnction o?lthe s stem'rﬂls needs’—to peer-to-peer systems. The first chal-
' y y ﬁenge is to gather information about thbilities of

ab.'“ty o prop(_erly assign functlonallty to an appro the participants, e.g., network connectivity, available
priate set of sites and of load balancing, better loa)

. . : storage and CPU power, and theedsof the appli-
balancing results in values éf approaching one [6].

) ion, e.g. mand level istribution of conten
In a few systems, such as SETI@home, all avallablceatO » €.0., demand levels, distribution of content

service resources will be used: thusapproaches popularity, and network location. The second chal-

d, and it makes sense fan to equaln. However, lenge is to apply this information to select a sub-

. : set of the participants to host service functions, and
in most systems each node can provide far more re-

sources than it is likely to consume; thus,< d, a_network overlay tppo_logy allowing t'hem tp coor
. - dinate. Status monitoring and reconfiguration must
and given reasonable efficieney, < n.

Self-organizing subsets address key problems ogcur automatically and in a decentralized fashion.

scale and adaptation that are inherent in the mas-Thus, we are guided by the following design
sively decentralized approach. For example, routinghilosophies in building scalable, highly available
state and hop count for request routing in existingeer-to-peer systems:

e It is important to dynamically select subsets of
participants to host service functions in a de-
centralized manner. In the wide area, it is not
necessary to make optimal choices; rather, it is
sufficient to make good choices in a majority of
cases and to avoid poor decisions. For example,
current research efforts place functionality ran-
domly and use replication to probabilistically

of replicas needed to achieve a given minimum
level of availability as a function of workload
and failure characteristics. Once again, a key
idea is that a few well-placed replicas will de-
liver higher availability than a larger number of
randomly placed replicas because of the con-
trol overhead incurred by coordination among
replicas.

deliver acceptable performance for individual

requests. Our approach is t place functionality The rest of this position paper elaborates on some
o deterministically and to replicate it as nec-of the challenges we see in fully distributing service

essary based on network and application chafunctionality among a large number of nodes and de-
acteristics. This requires methods to evaluatscribes Opus, a framework we are using to explore
expected performance and availability of canthe structure and organization of peer-to-peer sys-
didate configurations to determine if they meetems.

the targets.

« A key challenge to coordinating peer-to-pee? Challenges to Massive Decentral-
systems is collecting metadata about system jzation
characteristics. Configuring a peer-to-peer sys-
tem requires tracking the available storageln this section, we further elaborate on our view of
bandwidth, memory, stability (in terms of up-why fully distributing functionality among a large
time and availability), computational power,number of Internet nodes is the wrong way to build
and network location of a large number ofpeer-to-peer systems. While a number of techniques
hosts. At first glance, maintaining global statéhave been proposed to minimize per-node control
about potentially billions of hosts is intractable.traffic and state requirements, it still remains true
However, good (rather than optimal) choiceghat in a fully decentralized system with millions of
require only approximate information: aggres+odes, the characteristics of all million nodes have to
sive use of hierarchy and aggregation can limibe maintained somewhere in the system. To pick one
the amount of state that any node must mairexample, each node in a million-node Pastry system
tain. Once a subset is selected, the systemust track the characteristics of 75 (given the sug-
must track only a small set of candidate “re-gested representative tuning parameters) individual
placement” nodes to address failures or evolvaodes [6], potentially randomly spread across the
ing system characteristics. Similarly, clientsinternet. We believe that by choosing an appropri-
maintain enough system metadata to choosae subset of global hosts:(of n) to provide ap-
the replica likely to deliver the best quality of plication functionality and by leveraging hierarchy,
service (where QoS is an application-specifi¢he vast majority of nodes will maintain state about
measure). Once again, the key is to make a@ constant (small) number of nearagents Sets of
propriate request routing decisions almost all ofgents are aggregated to form hierarchies and in turn
the time, without global state. maintain state about a subset of thenodes and per-
haps approximate information on the full setraf
e Service availability is at least as important agiodes. Thus, to route a request to an appropriate
average-case performance. Thus, we are dserver, nodes forward requests to their agent, which
signing and building algorithms to replicatein turn determines the appropriate replica (member
data and code in response to changing cliemtf) to send the request to. In summary, massive
access patterns and desired levels of availabit= For simplicity. this di : _
or simplicity, this discussion assumes a two-level hierar-

itY_- _Some important qu'eSt_ionS include deterzhy, which should be sufficient for most applications. Our ap-
mining the level of replication and placementproach extends directly to hierarchies of arbitrary depth.

decentralization requires each system node to maitency (even when onl(lg n) such hops are taken).
tain state abou®(lgn) other global nodes. If suc- While such inflation of latency is perhaps not no-
cessful in carefully placing functionality at strategicticeable when performing a lookup to download a
network points, the vast majority of nodes maintairmulti-megabyte file, it can become the bottleneck
state about a constant and small number of peei@r a more general class of applications. With our
(one or more agents), and each agent maintains stafgproach, requests can typically be routed in a small
about a subset of th@ nodes providing application and constant number of steps (depending on the cho-
functionality. sen depth of the hierarchy). Further, because we
Another issue with massive decentralization ifiave explicit control over connectivity, hierarchy,
dealing with dynamic group membership. Assumand placement of functionality, we can ensure that
ing a heavy-tailed distribution for both host uptimerequests from end hosts are routed to a nearby agent,
and session length, significant network overheadhich is in turn routed to an active replica. The ran-
may be required to address host entry or departudom distribution of functionality in massively de-
of the large group of hosts that exhibit limited orcentralized systems makes it more difficult to im-
intermittent connectivity (some evidence for this ipose any meaningful hierarchy.
presented in [8]). This is especially problematic if
O(lg n) other hosts must be contacted to properly in-
sert or remove a host. In our approach, we advoca® An Overlay Peer Utility Service
focusing on the subset of hosts (againof »n) that
exhibit strong uptime and good connectivity— theWe are pursuing our agenda of dynamically placing
tail of the heavy-tailed distribution rather than thefunctionality at appropriate points in the network in
head. In this way, we are able to focus our attentiothe context of Opus [1], an overlay peer utility ser-
on hosts that are likely to remain a part of the sysvice. While our research is specific to this service,
tem, rather than being in a constant state of instabiwe believe our techniques and approach are gen-
ity where connectivity isalwayschanging in some eral to a broad range of peer-to-peer services. As
region of the network. Of course, nodes will bea general compute utility, we envision Opus hosting
constantly entering and leaving in our proposed sys large set of nodes across the Internet and dynami-
tem as well. However, entering nodes must contacglly allocating them among competing applications
only a small constant number of nodes upon joininpased on changing system characteristics. Individ-
(their agents) and can often leave silently (especiallyal applications specify their performance and avail-
if they never achieved the level of uptime or perfor-ability requirements to Opus. Based on this informa-
mance to be considered for future promotion to ation, we map applications to individual nodes across
agent or one of the: nodes that deliver application- the wide area. The initial mapping of applications to
level functionality). available resources is only a starting point. Based
Finally, a key approach to massive decentralizaen observed access patterns to individual applica-
tion is randomly distributing functionality among ations, Opus dynamically reallocates global resources
large set of nodes. The problem then becomes rout match application requirements. For example, if
ing requests to appropriate hosts in a small nummany accesses are observed for an application in
ber of steps (e.g.0(lgn) hops). Because thesea given network region, Opus may reallocate addi-
systems effectively build random application-layetional resources close to that location.
overlays, it can be difficult to match the topology of One key aspect of our work is the use of Ser-
the underlying IP network in routing requests. Thusyice Level AgreementsSLAS3 to specify the amount
replication and aggressive caching [3, 5, 7] must beach application is willing to “pay” for a given level
leveraged to achieve acceptable performance relaf performance. In general, these SLAs provide
tive to routing in the underlying IP network. While a continuous space over which per-service alloca-
this approach results in small inflation in “networktion decisions can be made, enabling prioritization
stress” relative to IP, application-layer store and foramong competing applications for a given system
ward delays can significantly impact end-to-end laeonfiguration. Based on an estimate of the marginal

utility of resources across a set of applications dahg research fundamentally contributes to our un-
current levels of global demand, Opus makes allderstanding of structuring distributed services for
cation and deallocation decisions based on the eavailability, survivability, and scalability. A key
pected relative benefit of a set of target configurachallenge in peer-to-peer research is to dynamically
tions [2]. determine the proper subset, of n participating
Many individual components of Opus require in-nodes, required to deliver target levels of availabil-
formation on dynamically changing system charadty, survivability, and performance, where typically
teristics. Opus employs a globsérvice overlajo m < n. For many application classes, especially
interconnect all available service nodes and to maithose involving mutable data, increasingwill not
tain soft state about the current mapping of utilitynecessarily improve performance and availability.
nodes to hosted applications (group membershipyVe are using Opus, an overlay peer utility service
The service overlay is key to many individual systhat dynamically allocates resources among compet-
tem components, such as routing requests from indirg applications, as a testbed for experimenting with

vidual clients to appropriate replicas, and performthe ideas presented in this paper.

ing resource allocation among competing applica-
tions. Individual services running on Opus employ

per-application overlaydo disseminate their own References

service data and metadata among individual replica
sites.

Clearly, a primary concern is ensuring the scal-
ability and reliability of the service overlay. In an
overlay with n nodes, maintaining global knowl-
edge require®)(n?) network probing overhead and
O(n?) global storage requirements. Such overhead
quickly becomes intractable beyond a few dozen
nodes. Peer-to-peer systems can reduce this ove[-
head to approximatelg (1g n) but are unable to pro-
vide any information about global system state, even
if approximate. Opus addresses scalability issues
through the aggressive use of hierarchy, aggrega-
tion, and approximation in creating and maintaining
scalable overlay structures. Opus then determine
the proper level of hierarchy and aggregation (along
with the corresponding degradation of resolution of
global system state) necessary to achieve the target
network overhead.

4 Conclusions

This paper argues that a principal challenge in peer-
to-peer systems is determining where to place func-
tionality in response to changing system character-
istics and as a function of application-specified tar-
gets for availability, survivability, and performance.

Many current peer-to-peer research efforts focus on

[1] Rebecca Braynard, Dejan KostiAdolfo Ro-

driguez, Jeffrey Chase, and Amin Vahdat.
Opus: an Overlay Peer Utility Service. Rro-
ceedings of the 5th International Conference
on Open Architectures and Network Program-
ming (OPENARCH)June 2002.

2] Jeffrey S. Chase, Darrell C. Anderson,

Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing Energy and Server
Resources in Hosting Centers. Pnoceedings

of the 18th ACM Symposium on Operating Sys-
tem Principles (SOSPDctober 2001.

Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and lon Stoica. Wide-
area Cooperative Storage with CFS. Rro-
ceedings of the 18th ACM Symposium on Op-
erating Systems Principles (SOSP’0Dcto-
ber 2001.

[4] John Kubiatowicz, David Bindel, Yan Chen,

Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon,
Westly Weimer, Christopher Wells, and Ben
Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. Pmoceed-
ings of ACM ASPLOSNovember 2000.

fully distributing service functionality across all (po- [5] Sylvia Ratnasamy, Paul Francis Mark Handley,

tentially billions) participating hosts. The result-

Richard Karp, and Scott Shenker. A Content

[6]

[7]

[8]

[9]

[10]

[11]

Addressable Network. IRroceedings of SIG-
COMM 2001 August 2001.

Antony Rowstron and Peter Druschel. Pas-
try: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems.
In Middleware’2001 November 2001.

Antony Rowstron and Peter Druschel. Storage
Management and Caching in PAST, a Large-
Scale, Persistent Peer-to-Peer Storage Ultility.
In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’0Q)-
tober 2001.

Stefan Saroiu, P. Krishna Gummadi, and
Steven D. Gribble. A Measurement Study of
Peer-to-Peer File Sharing Systems. Rro-
ceedings of Multimedia Computing and Net-
working 2002 (MMCN’02)January 2002.

lon Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer to Peer Lookup Service for In-
ternet Applications. IfProceedings of the 2001
SIGCOMM August 2001.

Marc Waldman, Aviel D. Rubin, and Lor-
rie Faith Cranor. Publius: A Robust, Tamper-
evident, Censorship-resistant, Web Publishing
System. InProc. 9th USENIX Security Sympo-
sium pages 59-72, August 2000.

Haifeng Yu and Amin Vahdat. The Costs and
Limits of Availability for Replicated Services.

In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSBtober
2001.

