Skip to main content

Determining Similarity of Conformational Polymorphs

  • Conference paper
  • First Online:
Algorithms — ESA 2002 (ESA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Included in the following conference series:

  • 1827 Accesses

Abstract

Conformational polymorphs are identical molecules that crystallize in different spatial formations. Understanding the amount of difference between the polymorphs might aid drug design as there is a widespread assumption that there exists a direct connection between the conformations in the crystallized form of the molecule and the conformations in the solvent.

We define a measure of similarity between conformational polymorphs and present an algorithm to compute it. For this end we weave together in a novel way our graph isomorphism method and substructure matching. We tested our algorithm on conformational polymorphs from the Cambridge Structural Database. Our experiments show that our method is very efficient in practice and has already yielded an important insight on the polymorphs stored in the data base.

K. Kedem was supported by NSF CISE Research Infrastructure grant #EIA- 9972853, by NSF #CCR-9988519, and by a grant from the Israeli Defence Ministry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.G. Barrow and R.M. Burstall, “Subgraph isomorphism, matching relational structures and maximal cliques”, Information Processing Letters, 4:83–84, 1976.

    Article  MATH  Google Scholar 

  2. J. Bernstein, “Conformational polymorphism”, Chapter 13 in Organic solid-state Chemistry, G. Desiraju, ed. from Studies in Organic Chemistry, Elsevier, Amsterdam Vol 32, 1987.

    Google Scholar 

  3. J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, “Patterns in hydrogen bonding: functionality and graph set analysis in crystals”, Angew. Chem. Int. Ed. Engl. 34:1555–1573, 1995.

    Article  Google Scholar 

  4. R. Blom and A. Haaland, J. Mol. Struc. 128:21–27, 1985.

    Article  Google Scholar 

  5. T.H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to algorithms”, The MIT press, Cambridge, 1990.

    Google Scholar 

  6. J.D. Dunitz and J. Bernstein, “Disappearing polymorphs”, Accounts of Chemical Research, 28:193–200 1995.

    Article  Google Scholar 

  7. J.P. Doucet and J. Weber, Computer-aided molecular design: Theory and applications, Academic Press 1996.

    Google Scholar 

  8. A. Enosh, “Determining similarity of conformational polymorphs”, M.SC. thesis, Computer Science Department, Ben-Gurion University, Israel.

    Google Scholar 

  9. S. Fortin. “The graph isomorphism problem”, Technical Report University of Alberta, 96–20 1996.

    Google Scholar 

  10. L.R. Foulds, Graph theory applications, Springer 1992.

    Google Scholar 

  11. P. Finn, D. Halperin, L. Kavraki, J. Latombe, R. Motwani, C. Shelton, and S. Venkatsubramanian, “Geometric manipulation of flexible ligands”, Applied Computational Geometry: Towards Geometric Engineering, LNCS 1148:67–78. Springer-Verlag, 1996.

    Chapter  Google Scholar 

  12. D. Fischer, R. Nussinov and H. J. Wolfson, “3-D substructure matching in protein molecules”, In Proc. 3rd. Annual Symposium on Combinatorial Pattern Matching, Tucson, Arizona, USA. LNCS 644:136–150. Springer-Verlag, 1992.

    Google Scholar 

  13. J. E. Hopcroft and R.E. Tarjan, “Isomorphism of planar graphs”, Complexity of Computer Computation, R. E. Miller and J.W. Thatcher, editors, Plenum, New York, 131–152, 1972.

    Google Scholar 

  14. A.M. Lesk, “Detection of 3-D patterns of atoms in chemical structures”, Communications of ACM, 22:219–224, 1979.

    Article  Google Scholar 

  15. E.M. Luks, “Isomorphism of graphs of bounded valence can be tested in polynomial time”, Journal of Computer and System Sciences, 25:42–65, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. L. Miller, “Isomorphism of k-contractible graphs. A generalization of bounded valence and bounded genus”, Information and Control, 56:1–20, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. J. Wolfson and I. Rigoutsos, “Geometric hashing”, IEEE Computational Science and Engineering, 4(4):10–21, 1997.

    Article  Google Scholar 

  18. K. Yamazaki, H. L. Bodlaender, B. Fluiter and D. M. Thilikos, “Isomorphism for graphs of bounded distance width”, Algorithmica, 24(2):105–127, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Enosh, A., Kedem, K., Bernstein, J. (2002). Determining Similarity of Conformational Polymorphs. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics