Skip to main content

Wide-Sense Nonblocking WDM Cross-Connects

  • Conference paper
  • First Online:
Algorithms — ESA 2002 (ESA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Included in the following conference series:

Abstract

We consider the problem of minimizing the number of wavelength interchangers in the design of wide-sense nonblocking cross-connects for wavelength division multiplexed (WDM) optical networks. The problem is modeled as a graph theoretic problem that we call dynamic edge coloring. In dynamic edge coloring the nodes of a graph are fixed but edges appear and disappear, and must be colored at the time of appearance without assigning the same color to adjacent edges. For wide-sense nonblocking WDM cross-connects with k input and k output fibers, it is straightforward to show that 2k-1 wavelength interchangers are always sufficient. We show that there is a constant c > 0 such that if there are at least ck 2 wavelengths then 2k-1 wavelength interchangers are also necessary. This improves previous exponential bounds. When there are only 2 or 3 wavelengths available, we show that far fewer than 2k-1 wavelength interchangers are needed. However we also prove that for any ε > 0 and k > 1/2ε, if the number of wavelengths is at least 1/ε2 then 2(1-ε)k wavelength interchangers are needed

Partially supported by NSERC.

Supported by a Lucent GRPW Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bar-Noy, R. Motwani, and J. Naor. The greedy algorithm is optimal for on-line edge coloring. Information Processing Letters, 44(5):251–253, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. L.A. Bassalygo and M. S. Pinsker. Complexity of an optimal nonblocking switching network without reconnections. Problems Inform. Transmission, 9:64–66, 1974.

    Google Scholar 

  3. L.A. Bassalygo and M. S. Pinsker. Asymptotically optimal networks for generalized rearrangeable switching and generalized switching without rearrangement. Problemy Peredachi Informatsii, 16:94–98, 1980.

    MATH  MathSciNet  Google Scholar 

  4. C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.

    Google Scholar 

  5. L. Cai and J.A. Ellis. NP-completeness of edge-coloring some restricted graphs. Discrete Appl. Math., 30:15–27, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Caragiannis, C. Kaklamanis, and P. Persiano. Edge coloring of bipartite graphs with constraints. Theoretical Computer Science, 270(1–2):361–399, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano. Optimal wavelength routing on directed fiber trees. Theoretical Computer Science, 221(1–2):119–137, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Favrholdt and M. Nielsen. On-line edge coloring with a fixed number of colors. In Foundations of Software Technology and Theoretical Computer Science, pages 106–116, Dec. 2000.

    Google Scholar 

  9. P. Feldman, J. Friedman, and N. Pippenger. Wide-sense nonblocking networks. SIAM J. Disc. Math., 1(2):158–173, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CA, 1979.

    MATH  Google Scholar 

  11. I. Holyer. The NP-completeness of edge-coloring. SIAM Journal of Computing, 10:718–720, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  12. T.R. Jensen and B. Toft. Graph Colouring Problems. Wiley, New York, 1995.

    Google Scholar 

  13. C. Kaklamanis and P. Persiano. Efficient wavelength routing on directed fiber trees. In Proceedings of the 4th European Symposium on Algorithms (ESA’ 96), pages 460–470, 1996.

    Google Scholar 

  14. C. Kaklamanis, P. Persiano, T. Erlebach, and K. Jansen. Constrained bipartite edge coloring with applications to wavelength routing. In Proceedings of the 24th International Colloquium on Automata, Languages, and Programming (ICALP’ 97), pages 493–504, 1997.

    Google Scholar 

  15. D. König. Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (in Hungarian). Mathematikai és Természettudományi Értesítő, 34:104–119, 1916.

    Google Scholar 

  16. V. Kumar and E. J. Schwabe. Improved access to optical bandwidth. In Proceedings of 8th ACM-SIAM Symposium on Discrete Algorithms(SODA’ 97), pages 437–444, 1997.

    Google Scholar 

  17. M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth. In Proceedings of the 36th Annual IEEE Symposium on the Foundations of Computer Science (FOCS’ 95), pages 548–557, 1995.

    Google Scholar 

  18. R. Ramaswami and G.H. Sasaki. Multiwavelength optical networks with limited wavelength conversion. In Proceedings of IEEE INFOCOM, volume 2, pages 489–498, 1997.

    Google Scholar 

  19. A. Rasala and G. Wilfong. Strictly non-blocking WDM cross-connects. In Proceedings of Symposium on Discrete Algorithms (SODA’ 00), pages 606–615, 2000.

    Google Scholar 

  20. A. Rasala and G. Wilfong. Strictly non-blocking WDM cross-connects for heterogreous networks. In Proceedings of Symoposium on Theory of Computation (STOC’ 00), 2000.

    Google Scholar 

  21. C.E. Shannon. Memory requirements in a telephone exchange. Bell System Tech. J., 29:343–349, 1950.

    MathSciNet  Google Scholar 

  22. V. G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz, 3:23–30, 1964.

    MathSciNet  Google Scholar 

  23. G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngibl. WDM cross-connect architectures with reduced complexity. Journal of Lightwave Technology, pages 1732–1741, October 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haxell, P., Rasala, A., Wilfong, G., Winkler, P. (2002). Wide-Sense Nonblocking WDM Cross-Connects. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics