Skip to main content

Translating a Planar Object to Maximize Point Containment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Abstract

Let C be a compact set in ℝ2 and let S be a set of n points in ℝ2. We consider the problem of computing a translate of C that contains the maximum number, κ*, of points of S. It is known that this problem can be solved in a time that is roughly quadratic in n. We show how random-sampling and bucketing techniques can be used to develop a near-linear-time Monte Carlo algorithm that computes a placement of C containing at least (1 - ɛ)κ*. points of S, for given ɛ > 0, with high probability. We also present a deterministic algorithm that solves the ?-approximate version of the optimal-placement problem and runs in O((n 1+δ+ n/ɛ) logm) time, for arbitrary constant δ > 0, if C is a convex m-gon.

Agarwal was supported by NSF grants ITR-333-1050, EIA-9870724, EIA-9972879, CCR-00-86013, and CCR-9732787, and by a grant from the U.S.-Israeli Binational Science Foundation. Sharir was supported by NSF Grants CCR-97-32101 and CCR- 00-98246, by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University, and by a grant from the U.S.-Israeli Binational Science Foundation. Smid was supported by NSERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica, 9:495–514, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. N.M. Amato, M.T. Goodrich, and E. A. Ramos. Computing the arrangement of curve segments: Divide-and-conquer algorithms via sampling. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pages 705–706, 2000.

    Google Scholar 

  3. G. Barequet, M. Dickerson, and P. Pau. Translating a convex polygon to contain a maximum number of points. Comput. Geom. Theory Appl., 8:167–179, 1997.

    MathSciNet  Google Scholar 

  4. H. Bast and T. Hagerup. Fast and reliable parallel hashing. In Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pages 50–61, 1991.

    Google Scholar 

  5. H. Brönnimann, B. Chazelle, and J. Matou?sek. Product range spaces, sensitive sampling, and derandomization. SIAM J. Comput., 28:1552–1575, 1999. 51

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9:145–158, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Chazelle and D.T. Lee. On a circle placement problem. Computing, 36:1–16, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point clustering problems. J. Algorithms, 19:474–503, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for the closest-pair problem. J. Algorithms, 25:19–51, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Efrat, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and related problems. Comput. Geom. Theory Appl., 4:119–136, 1994.

    MATH  MathSciNet  Google Scholar 

  11. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom., 11:321–350, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Gajentaan and M.H. Overmars. On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

    MATH  MathSciNet  Google Scholar 

  13. T._Hagerup and C. Rüb. A guided tour of Cherno. bounds. Inform. Process. Lett., 33:305–308, 1990.

    Google Scholar 

  14. D.P. Huttenlocher and S. Ullman. Object recognition using alignment. In Proc. 1st Internat. Conf. Comput. Vision, pages 102–111, 1987.

    Google Scholar 

  15. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59–71, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Lamdan, J.T. Schwartz, and H. J. Wolfson. Object recognition by affine invariant matching. In Proc. IEEE Internat. Conf. Comput. Vision Pattern. Recogn., pages 335–344, 1988.

    Google Scholar 

  17. H.P. Lenhof and M. Smid. Sequential and parallel algorithms for the k closest pairs problem. Internat. J. Comput. Geom. Appl., 5:273–288, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  18. F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  19. O. Schwarzkopf, U. Fuchs, G. Rote, and E. Welzl. Approximation of convex figures by pairs of rectangles. Comput. Geom. Theory Appl., 10:77–87, 1998.

    MATH  MathSciNet  Google Scholar 

  20. M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete Comput. Geom., 6:593–613, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M., Welzl, E. (2002). Translating a Planar Object to Maximize Point Containment. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics