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Abstract. This paper is based on the work carried out in the framework
of the Verbmobil project, which is a limited-domain speech translation
task (German-English). In the final evaluation, the statistical approach
was found to perform best among five competing approaches.
In this paper, we will further investigate the used statistical translation
models. A shortcoming of the single-word based model is that it does not
take contextual information into account for the translation decisions.
We will present a translation model that is based on bilingual phrases to
explicitly model the local context. We will show that this model performs
better than the single-word based model. We will compare monotone and
non-monotone search for this model and we will investigate the benefit
of using the sum criterion instead of the maximum approximation.

1 Introduction

In this paper, we will study some aspects of the phrase-based translation (PBT)
approach in statistical machine translation. The baseline system we are using
has been developed in the Verbmobil project [17].

In the final project evaluation [13], several approaches were evaluated on the
same test data. In addition to a classical rule-based approach [4] and a dialogue-
act based approach [12] there were three data-driven approaches, namely an
example-based [1], a substring-based [2] and a statistical approach developed in
the authors’ group. The data-driven approaches were found to perform signifi-
cantly better than the other two approaches. Out of the data-driven approaches
the statistical approach performed best, e.g. the error rate for the statistical
approach was 29% instead of 62% for the classical rule-based approach.

During the progress of the Verbmobil project, different variants of statis-
tical translation systems have been implemented and experimental tests have
been performed for text and speech input [7,10]. The major variants were:

– the single-word based approach (SWB), see Sect. 2.2
– the alignment template approach (AT), see Sect. 2.3

The evaluation showed that the AT approach performs much better than the
SWB variant. It is still an open question, which components of the AT system
are responsible for the improvement of the translation quality.
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In this paper, we will review the baseline system and we will describe in
detail a method to learn phrasal translations. We will compare SWB to phrase-
based translation, monotone to non-monotone search, and the sum criterion to
maximum approximation.

2 Review of the Baseline System

2.1 Bayes Decision Rule

The goal of machine translation is to automatically transfer the meaning of a
source language sentence fJ

1 = f1, ..., fj , ..., fJ into a target language sentence
eI
1 = e1, ..., ei, ..., eI . In statistical machine translation, the conditional probabil-
ity Pr(eI

1|fJ
1 )

1 is used to describe the correspondence between the two sentences.
This model can be used directly for translation by solving the following maxi-
mization problem:

êI
1 = argmax

eI
1

{
Pr(eI

1|fJ
1 )

}
(1)

= argmax
eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

(2)

In the second equation, we have applied Bayes theorem. The decomposition into
two knowledge sources makes the modeling easier. Now, we have two models:

1. the language model Pr(eI
1) and

2. the translation model Pr(fJ
1 |eI

1).

The language model describes the correctness of the target language sentence.
It helps to avoid syntactically incorrect sentences. A detailed description of lan-
guage models can be found in [6]. This paper will focus on the translation model.

The resulting architecture for the statistical translation approach is shown in
Fig. 1 with the translation model further decomposed into lexicon and alignment
model.

2.2 Single Word-Based Translation Models

Concept. A key issue in modeling the string translation probability Pr(fJ
1 |eI

1)
is the question of how we define the correspondence between the words of the
target sentence and the words of the source sentence. In typical cases, we can
assume a sort of pairwise dependence by considering all word pairs (fj , ei) for a
given sentence pair (fJ

1 ; e
I
1). Models describing these types of dependencies are

referred to as alignment models [3,16].
When aligning the words in parallel texts, we typically observe a strong

localization effect. Figure 2 illustrates this effect for the language pair German-
English. In many cases, although not always, there is an additional property:
over large portions of the source string, the alignment is monotone.
1 The notational convention will be as follows: we use the symbol Pr(·) to denote
general probability distributions with (nearly) no specific assumptions. In contrast,
for model-based probability distributions, we use the generic symbol p(·).
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Fig. 1. Architecture of the translation approach based on Bayes decision rule

Basic Alignment Models. To arrive at a quantative specification, we define
the alignment mapping: j → i = aj , which assigns a word fj in position j
to a word ei in position i = aj . We rewrite the probability for the translation
model by introducing the ’hidden’ alignments aJ

1 := a1...aj ...aJ for each sentence
pair (fJ

1 ; e
I
1). to structure this probability distribution, we factorize it over the

positions in the source sentence and limit the alignment dependencies to a first-
order dependence:

Pr(fJ
1 |eI

1) =
∑
aJ
1

Pr(fJ
1 , aJ

1 |eI
1) (3)

=
∑
aJ
1

Pr(aJ
1 |eI

1) · Pr(fJ
1 |aJ

1 , eI
1) (4)

= p(J |eI
1) ·

∑
aJ
1

J∏
j=1

[p(aj |aj−1, I, J) · p(fj |eaj )] (5)

Here, we have the following probability distributions:

– the sentence length probability: p(J |eI
1), which is included here for complete-

ness, but can be omitted without loss of performance;
– the lexicon probability : p(f |e);
– the alignment probability: p(aj |aj−1, I, J).
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Fig. 2. Word aligned sentence pair

There are various ways to model the alignment probability. For further de-
tails, see [3,16]. Some of these models take one-to-many alignments explicitly
into account, but the lexicon probabilities p(f |e) are still based on single words
in each of the two languages.

We will show the results for two search variants: a monotone search (later
referred to as MON) that produces only monotone translations and a quasi-
monotone search procedure (later referred to as GE). This proceeds from left to
right along the positions of the source sentence but allows for a small number
of source positions that are not processed monotonically. The word reorderings
of the source sentence positions are restricted to the words of the German verb-
group. For further details, see [15].

2.3 The Alignment Template Approach

The key element of the AT approach [10] are the alignment templates. These are
pairs of source and target language phrases together with an alignment between
the words within the phrases. The AT model decomposes the translation proba-
bility Pr(fJ

1 |eI
1) by introducing two hidden variables: the sequence of alignment
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templates zK
1 and the alignments within the templates ãK

1 .

Pr(fJ
1 |eI

1) =
∑

zK
1 ,ãK

1

Pr(ãK
1 |eI

1) · Pr(zK
1 |ãK

1 , eI
1) · Pr(fJ

1 |zK
1 , ãK

1 , eI
1) (6)

=
∑

zK
1 ,ãK

1

K∏
k=1

p(ãk|ãk−1) · p(zk|ẽk) · p(f̃k|zk, ẽk) (7)

There are three probability distributions:

– the phrase alignment probability p(ãk|ãk−1)
– the probability of applying an alignment template p(zk|ẽk)
– the phrase translation probability p(f̃k|zk, ẽk)

The AT approach uses a non-monotone search algorithm. The model scal-
ing factors are trained with maximum entropy [9]. This is an extremely brief
description of the AT model. For further details, see [10].

3 Phrase-Based Translation

3.1 Motivation

One major disadvantage of the single-word based (SWB) approach is that con-
textual information is not taken into account. As already said, the lexicon proba-
bilities are based only on single words. For many words, the translation depends
heavily on the surrounding words. In the SWB translation, this disambiguation
is done completely by the language model. Often the language model is not
capable of doing this. An example is shown in Fig. 3.

SOURCE was halten Sie vom Hotel Gewandhaus ?
TARGET what do you think about the hotel Gewandhaus ?
SWB what do you from the hotel Gewandhaus ?
PBT what do you think of hotel Gewandhaus ?

Fig. 3. Translation example

One way to incorporate the context into the translation model is to learn
translations for whole phrases instead of single words. Here, a phrase is simply
a sequence of words. So the basic idea of phrase-based translation (PBT) is to
segment the given source sentence into phrases, then to translate each phrase
and finally compose the target sentence from these phrase translations as seen
in Fig. 4. As seen in the last phrase pair of the example, punctuation marks are
treated as normal words.
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SOURCE: abends würde ich gerne entspannen und vielleicht in die Sauna gehen .
source segmentation translation
abends in the evening
würde ich gerne entspannen I would like to relax
und and
vielleicht in die Sauna gehen maybe go to the sauna
. .
TARGET: in the evening I would like to relax and maybe go to the sauna .

Fig. 4. Example for phrase based translation
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Fig. 5. Word aligned sentence pair

source phrase target phrase
ja well
ja, well,
ja, guten Tag well, hello
ja, guten Tag. well, hello.
, ,
, guten Tag , hello
, guten Tag. , hello.
guten Tag hello
guten Tag. hello.
. .

Fig. 6. Extracted bilingual phrases

3.2 Bilingual Phrases

Basically, a bilingual phrase is a pair of m source words and n target words. For
extraction from a bilingual word aligned training corpus, we pose two additional
constraints:

1. the words are consecutive and
2. they are consistent with the word alignment matrix.

This consistency means that the m source words are aligned only to the n target
words and vice versa. The following criterion defines the set of bilingual phrases
BP of the sentence pair (fJ

1 ; e
I
1) that is consistent with the word alignment

matrix A:

BP(fJ
1 , eI

1, A) =
{(

f j+m
j , ei+n

i

)
: ∀(i′, j′) ∈ A : j ≤ j′ ≤ j +m ↔ i ≤ i′ ≤ i+ n

}
This criterion is identical to the alignment template criterion described in [10].
Figure 5 is an example of a word aligned sentence pair. Figure 6 shows the bilin-
gual phrases extracted from this sentence pair according to the defined criterion.

The extraction of the bilingual phrases from a bilingual word aligned training
corpus can be done in a straightforward way. The algorithm in Fig. 7 computes
the set BP with the assumption that the alignment is a function A : {1, ..., J} →
{1, ..., I}. It can be easily extended to deal with general alignments.
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INPUT: fJ
1 , eI

1, A

FOR i2 = 1 TO I DO

FOR i1 = 1 TO i2 DO

SP = {j|∃i : i1 ≤ i ≤ i2 ∧ A(j) = i}
IF consec(SP ) THEN

j1 = min{SP}
j2 = max{SP}
BP = BP ∪ {(f j2

j1
, ei2

i1
)}

OUTPUT: BP

Fig. 7. Algorithm extract-BP for extracting bilingual phrases

3.3 Phrase-Based Translation Model

To use the bilingual phrases in the translation model we introduce the hidden
variable B. This is a segmentation of the sentence pair (fJ

1 ; e
I
1) into K phrases

(f̃K
1 ; ẽ

K
1 ). We use a one-to-one phrase alignment, i.e. one source phrase is trans-

lated by exactly one target phrase. So, we obtain:

Pr(fJ
1 |eI

1) =
∑
B

Pr(fJ
1 , B|eI

1) (8)

=
∑
B

Pr(B|eI
1) · Pr(fJ

1 |B, eI
1) (9)

= α(eI
1) ·

∑
B

Pr(f̃K
1 |ẽK

1 ) (10)

Here, we assume that all segmentations have the same probability α(eI
1). Next,

we allow only monotone translations. This will result in a very efficient search.
So the phrase f̃1 is produced by ẽ1, the phrase f̃2 is produced by ẽ2, and so on.

Pr(f̃K
1 |ẽK

1 ) =
K∏

k=1

p(f̃k|ẽk) (11)

Finally, we have to estimate the phrase translation probabilities p(f̃ |ẽ). This is
done via relative frequencies:

p(f̃ |ẽ) = N(f̃ , ẽ)
N(ẽ)

(12)

HereN(ẽ) is the count of the phrase ẽ.N(f̃ , ẽ) denotes the count of the event that
f̃ has been seen as a translation of ẽ. If one occurrence of ẽ has N > 1 possible
translations, each of them contributes to N(f̃ , ẽ) with 1/N . These counts are
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calculated from the training corpus. If during the test an unknown word occurs,
which was not seen in the training, this word is translated by itself.

Using a bigram language model and assuming Bayes decision rule (2), we
obtain the following search criterion:

êI
1 = argmax

eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

(13)

= argmax
eI
1

{
I∏

i=1

p(ei|ei−1) · α(eI
1) ·

∑
B

K∏
k=1

p(f̃k|ẽk)

}
(14)

≈ argmax
eI
1

{
I∏

i=1

p(ei|ei−1) ·
∑
B

K∏
k=1

p(f̃k|ẽk)λ
}

(15)

In the last step, we omitted the segmentation probability α(eI
1). We also in-

troduced the translation model scaling factor λ [14]. Using the maximum ap-
proximation for the sum over all segmentations, we obtain the following search
criterion:

êI
1 ≈ argmax

eI
1,B

{
I∏

i=1

p(ei|ei−1) ·
K∏

k=1

p(f̃k|ẽk)λ
}

(16)

3.4 Monotone Search

The monotone search can be efficiently computed with dynamic programming.
For the maximization problem in (16), we define the quantity Q(j, e) as the
maximum probability of a phrase sequence that ends with the word e and covers
positions 1 to j of the source sentence.Q(J+1, $) is the probability of the optimal
translation. The $ symbol is the sentence boundary marker. When finishing a
hypothesis, we have to apply the conditional probability p($|e′) , which denotes
the probability of the sentence end after the word e′. We obtain the following
dynamic programming recursion:

Q(0, $) = 1 (17)
Q(j, e) = max

0≤j′<j,

e′,ẽ

Q(j′, e′) · p(f j
j′+1|ẽ)λ · p(ẽ|e′) (18)

Q(J + 1, $) = max
e′

Q(J, e′) · p($|e′) (19)

During the search, we store back-pointers to the maximizing arguments. So after
performing the search, we can generate the optimal translation. This method
will be later referred to as MonMax. The resulting algorithm has a worst-case
complexity of O(J2 · Ve · |{ẽ}|). Here, Ve denotes the vocabulary size of the
target language and |{ẽ}| denotes the number of target language phrases. Using
efficient data structures and taking into account that not all possible target
language phrases can occur in translating a specific source language sentence,
we can perform a very efficient search.
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For the search criterion in (15), we define the quantity Q(j, ei
1) as the maxi-

mum probability of a phrase sequence that results in the word sequence ei
1 and

covers the positions 1 to j of the source sentence. Q(J +1, êI
1) is the probability

of the optimal translation êI
1.

Q(0, $) = 1 (20)

Q(j, ei
1) =

∑
0≤j′<j

0≤i′<i

Q(j′, ei′
1 ) · p(f j

j′+1|ei
i′+1)

λ · p(ei
i′+1|ei′) (21)

Q(J + 1, êI
1) = max

eI
1

Q(J, eI
1) · p($|eI) (22)

This method will be later referred to asMonSum. The resulting algorithm has
a worst-case complexity of O(J2 · Ve

I · |{ẽ}|). Because of the sum criterion it is
not allowed to apply language model recombination. This results in the factor
Ve

I . In most statistical translation systems the maximum approximation is used,
e.g. [3,5,10,18], but we will show in Sect. 4 that the sum criterion yields better
results. These monotone algorithms are especially usefull for language pairs that
have a similar word order, e.g. Spanish-Catalan or Italian-English.

3.5 Non-monotone Search

An analysis of the monotone translation results for the language pair German-
English shows that many translation errors are due to the monotony constraint.
Therefore in this section, we describe a way to extend the search described above
to allow non-monotone translations. The idea is to use a reordering graph (RG)
to restrict the number of possible word orders.

Reordering Graph. A RG is a directed acyclic graph with one start node
and one goal node. The nodes are numbered from 0 (start) to N (goal). The
numbering must be consistent with a topological order of the graph. Each node
is marked with a coverage vector. This is a bit vector b of size J (the source
sentence length) with the property b[j] = 1 iff the source position j is already
covered, i.e. translated. The RG has the additional property that for each node its
coverage vector differs from the coverage vector of each predecessor by exactly
one bit. The start and the goal node are marked with 0J and 1J . We define
Pred(n) as the set of all predecessors (direct and indirect) of the node n. We
define S(n1, n2) as the source words covered by n2 but not by n1 in the same
order as in the source sentence.

We gain a RG by removing non-needed information from a word graph gen-
erated by the SWB search and combining equivalent nodes, i.e. nodes with the
same coverage vector.

Search. The search on the RG can be done by dynamic programming. The
idea is similar to the monotone search, but instead of going over all source
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positions j, we go over all nodes n of the RG from 0 to N . When visiting a
node the topological sorting guarantees that all its predecessors have already
been processed. Using maximum approximation, the quantity Q(n, e) is defined
as the maximum probability of a phrase sequence ending with the word e and
translating S(0, n).
We obtain the following dynamic programming recursion:

Q(0, $) = 1 (23)
Q(n, e) = max

n′∈P red(n),

e′,ẽ

Q(n′, e′) · p(S(n′, n)|ẽ)λ · p(ẽ|e′) (24)

Q(N + 1, $) = max
e′

Q(N, e′) · p($|e′) (25)

This method will be later referred to as ExtMax. The equations for the sum
criterion are analog. We define the quantity Q(n, ei

1) as the maximum probability
of a phrase sequence that results in the word sequence ei

1 and translating S(0, n).
The method using the sum criterion will be later referred to as ExtSum.
We obtain the following dynamic programming recursion:

Q(0, $) = 1 (26)

Q(n, ei
1) =

∑
n′∈P red(n),

0≤i′<i

Q(n′, ei′
1 ) · p(S(n′, n)|ei

i′+1)
λ · p(ei

i′+1|ei′) (27)

Q(N + 1, êI
1) = max

eI
1

Q(N, eI
1) · p($|eI) (28)

3.6 Pruning

To further speed up the search and reduce the memory requirements, we ap-
ply threshold and histogram pruning. Note that with applying these pruning
techniques the sum criterion is only approximately fulfilled. This is because if a
hypothesis is pruned away, further contributions of extensions of this hypothesis
are lost.

Threshold Pruning. The idea of threshold pruning is to remove all hypotheses
that have a low probability relative to the best hypothesis. We need a threshold
pruning parameter q, with 0 ≤ q ≤ 1. We define Q0(j) as the maximum proba-
bility of all hypotheses for a source sentence position j. We prune a hypothesis
iff:

Q(j, ei
1) < q · Q0(j)

Histogram Pruning. The idea of histogram pruning is to restrict the maxi-
mum number of hypotheses for each source sentence position. So, only a fixed
number of the best hypotheses is kept.
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4 Results

4.1 Corpora

We present results on the Verbmobil task, which is a speech translation task
in the domain of appointment scheduling, travel planning, and hotel reservation
[17]. Table 1 shows the corpus statistics of this task. We use a training corpus,
which is used to train the translation model and the language model, a devel-
opment corpus, which is used to estimate the model scaling factors, and a test
corpus.

Table 1. Characteristics of training corpus (Train, PM=punctuation marks), manual
lexicon (Lex), development corpus (Dev), test corpus (Test)

No Preprocessing With Preprocessing
German English German English

Train Sentences 58 073
Words incl. PM 519 523 549 921 522 933 548 874
Words excl. PM 418 979 453 632 421 689 456 629
Singletons 3 453 1 698 3 570 1 763
Vocabulary 7 940 4 673 8 102 4 780

Lex Entries 12 779
Extended Vocabulary 11 501 6 867 11 904 7 089

Dev Sentences 276
Words 3 159 3 438 3 172 3 445
Trigram PP - 28.1 - 26.3

Test Sentences 251
Words 2 628 2 871 2 640 2 862
Trigram PP - 30.5 - 29.9

4.2 Criteria

So far, in machine translation research does not exist one generally accepted
criterion for the evaluation of the experimental results. Therefore, we use a large
variety of different criteria. In all experiments, we use the following error criteria:

– WER (word error rate):
The WER is computed as the minimum number of substitution, insertion
and deletion operations that have to be performed to convert the generated
sentence into the target sentence. This performance criterion is widely used
in speech recognition.

– PER (position-independent word error rate):
A shortcoming of the WER is the fact that it requires a perfect word order.
The word order of an acceptable sentence can be different from that of the
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target sentence, so that the WER measure alone could be misleading. To
overcome this problem, we introduce as additional measure the PER. This
measure compares the words in the two sentences ignoring the word order.

– mWER (multi-reference word error rate):
For each test sentence, there is not only used a single reference translation,
as for the WER, but a whole set of reference translations. For each trans-
lation hypothesis, the edit distance (number of substitutions, deletions and
insertions) to the most similar sentence is calculated [8].

– BLEU score:
This score measures the precision of unigrams, bigrams, trigrams and four-
grams with respect to a whole set of reference translations with a penalty
for too short sentences [11]. Unlike all other evaluation criteria used here,
BLEU measures accuracy, i.e. the opposite of error rate. Hence, large BLEU
scores are better.

– SSER (subjective sentence error rate):
For a more detailed analysis, subjective judgments by test persons are nec-
essary. Each translated sentence was judged by a human examiner according
to an error scale from 0.0 to 1.0. A score of 0.0 means that the translation is
semantically and syntactically correct, a score of 0.5 means that a sentence
is semantically correct but syntactically wrong and a score of 1.0 means that
the sentence is semantically wrong [8].

– IER (information item error rate):
The test sentences are segmented into information items; for each of them,
the translation candidates are assigned either “OK” or an error class. If
the intended information is conveyed and there are no syntactic errors, the
sentence is counted as correct [8].

– ISER (information item semantic error rate):
This criterion is like the IER, but does not take into account slight syntactic
errors.

4.3 PBT Variants

Table 2 shows the results for the PBT variants presented in this paper. As one
may expect, the non-monotone variant yields better results than the monotone
one. For the sum criterion, there is an improvement of the SSER of 7.8% absolute,
which is 19.6% relative. We conclude that a for German-English translation non-
monotone search is important to obtain good translation results. Typically in
statistical translation systems the maximum approximation is used. Because of
the simplicity of the presented PBT model, the sum over all segmentations can
be carried out. Using the sum criterion instead of the maximum approximation
improves translation quality. For the monotone search, there is an improvement
of the SSER of 1.1% and for the non-monotone search of 0.6%.

4.4 Comparison with Other Systems

We compare the PBT results to the two other statistical translation systems,
namely the SWB approach (see Sect. 2.2 and [15]) and the AT approach (see
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Table 2. Comparison of different PBT variants

System Variant WER PER mWER BLEU SSER IER ISER
PBT MonMax 46.9 33.3 42.0 42.1 40.8 40.2 19.0

MonSum 45.9 32.2 40.9 43.4 39.7 40.0 19.2
PBT ExtMax 42.5 30.4 36.7 49.5 32.5 33.0 17.7

ExtSum 42.3 30.1 36.3 50.0 31.9 31.9 16.8

Table 3. Comparison of different translation systems

System Variant WER PER mWER BLEU SSER IER ISER

SWB MON 49.0 35.2 43.4 37.0 47.0 51.7 33.2
GE 41.9 31.4 35.9 47.5 35.1 39.0 21.6

PBT MonSum 45.9 32.2 40.9 43.4 39.7 40.0 19.2
ExtSum 42.3 30.1 36.3 50.0 31.9 31.9 16.8

AT 39.2 29.3 33.1 51.1 30.5 33.9 17.4

Sect. 2.3 and [10]). Some translation examples are shown in Table 4. In [2,13] an
example-based approach is mentioned that is to some extend similar to PBT.
The results are not included because they are evaluated on a different test set
and therefore not comparable.

As Table 3 shows, the monotone PBT outperforms by far the monotone
SWB translation. There is an improvement of the SSER of 7.3% absolute, which
is 15.5% relative. The non-monotone PBT yields better results than the non-
monotone SWB variant. There is an improvement of the SSER of 3.2%. So, this
rather simple and straightforward phrase-based model performs better than the
more complicated SWB model. We conclude that incorporating the local context
into the translation model is important to achieve good translation results. One
way to do this is the use of bilingual phrases.

On the other hand, PBT does not reach the performance of the AT approach,
which is still 1.4% better. A possible reason is the generalization capability of
the AT approach.

5 Conclusion

In this paper, we have presented a statistical translation model, which is based
on bilingual phrases. Compared to the two other statistical approaches, this is
a rather simple method, which results in a very efficient dynamic programming
search algorithm. In the result section, we have compared this model to the SWB
and AT approaches.

The major conclusions are:

1. Using bilingual phrases instead of single words in the translation model sig-
nificantly improves translation quality.
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Table 4. Translation examples

SOURCE wollen wir am Abend Essen gehen ?
TARGET would you like to go out for a meal in the evening ?
PBT MON we will want evening go out to eat ?
PBT EXT do we want to go out to eat in the evening ?

SOURCE ich würde am dreißigsten gern mit dem Zug fahren .
TARGET I would like to take the train on the thirtieth .
PBT MON I would thirtieth like to go by train .
PBT EXT on the thirtieth I would like to go by train .

SOURCE dann müssen wir noch die Rückreise klären .
TARGET then we still have to arrange the return journey .
PBT MON then we still have to the return trip clarify .
PBT EXT then we still have to clarify the return trip .

SOURCE am Mittwoch fahren wir mit dem Zug wieder zurück nach Hamburg .
TARGET on Wednesday we will go back by train to Hamburg .
SWB GE on Wednesday we go by train from Hamburg again .
PBT MON on Wednesday we go by train again back to Hamburg .

SOURCE das Flugzeug ist dann um zwölf Uhr fünfundzwanzig in Hannover .
TARGET the plane will arrive at Hanover at twenty-five past twelve .
SWB GE the flight is at eleven twenty five in Hanover .
PBT MON the plane is at twelve twenty-five in Hanover .

SOURCE ich buche in dem Königshotel zwei Einzelzimmer mit Dusche .
TARGET I will book two single rooms with a shower at the Königshotel .
SWB GE I will book the Königshotel two singles with shower .
PBT MON I will book in the Königshotel two single rooms with shower .
PBT EXT I will book two single rooms in the Königshotel with shower .

2. For translating from German to English a non-monotone search is essential
to produce good translations.

3. The sum criterion performs better than the maximum approximation.

Further investigations will concern the segmentation probability Pr(B|eI
1),

which has so far been omitted. The use of hierarchical phrases, e.g. the pattern
pairs in [2], might be interesting. Smoothing the phrase probabilities could result
in additional improvements.
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