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Abstract. In this work we present an appearance-based 3-D Face Recog-
nition approach that is able to recognize faces in video sequences, inde-
pendent from face pose. For this we combine eigen light-fields with prob-
abilistic propagation over time for evidence integration. Eigen light-fields
allow us to build an appearance based 3-D model of an object; proba-
bilistic methods for evidence integration are attractive in this context as
they allow a systematic handling of uncertainty and an elegant way for
fusing temporal information. Experiments demonstrate the effectiveness
of our approach. We tested this approach successfully on more than 20
testing sequences, with 74 different individuals.

1 Introduction
Face recognition has been a major research topic in recent years. Among the
most successful approaches are [21; 12; 22]. The techniques have been thoroughly
evaluated in the FERET-Protocol [15] and produce acceptable recognition rates
in ideal conditions. However, if ideal conditions are not met, e.g., in case of
out-of-plane rotation, recognition rates drop drastically. The major reason is,
that the above recognition approaches use the still-to-still technique: gallery
and probe sets contain still face images (mug-shots), and recognition rates are
high only if geometrical and photometrical conditions of the test images in the
probe set match those in the gallery set. To solve these problems a video-to-video
technique has been proposed [8]. In this setting, gallery and probe sets consist of
videos, instead of mug-shots, i.e., each individual is represented by a video ideally
showing a variety of views, and the individual is to be recognized from a video
where he/she also shows a wide variety of views. In this approach, exemplars are
learned that summarize the visible 3-D variations of the face in the video, their
priors as well as their dynamics. Matching is done by evidence integration over
time; a particle method is used to analytically estimate the probability density
function over the set of known individuals.

The set of exemplars that are learned from the training videos represent an
appearance-based 3-D representation of the face. This representation is built
incrementally and depends heavily on the training video: slight variations in
the video lead to completely different representations. This hinders a common
representation of the face space; the consequence is that one needs to test each
single face as a hypothesis. A more systematic way of building an appearance-
based 3-D model is therefore important. In this paper we propose to use eigen



light-fields (ELFs) [4], which were previously used to build a view-independent
still-to-still face representation. In this paper we combine the advantages of the
ELFs with the probabilistic evidence integration over time of [8]. The challenge is
to use ELFs for low resolution video data instead of high resolution still images.

The remainder of this paper is organized as follows: Sec. 2 introduces some
preliminaries. In Sec. 3 we introduce eigen light-fields. The recognition method
is discussed in Sec. 4. We conclude with experimental results in Sec. 5 and final
remarks are in Sec. 6.

2 Preliminaries

Before delving into details about ELFs and evidence integration, we will intro-
duce some terminology borrowed from the FERET evaluation protocol [15]. A
Gallery V = {V1, V2, . . . , VN} is a set of image sets. Each Vi is associated with
a single individual, i.e., N individuals N = {1, 2, . . . , N}, are represented in the
Gallery V. The gallery contains the exemplars against which the probe set is
matched. A Probe set P = {P1, P2, . . . , PM} is a set of M probe videos which
are used for testing.

2.1 Geometric and Photometric Transformations

An image Z may undergo a geometrical or photometrical transformation

Z̃ = Tα{Z} (1)

for α ∈ A, where A is the set of possible transformations. The set of possible
transformations A has to be pre-defined in our framework.

2.2 Likelihood Measure

Let F = {f1, f2 . . . , fN} be a set of face images, with N = {1, 2, . . . , N}. Let
further X ∈ A × N be a random variable. This random variable defines the
transformation Tα and the number i of a face fi ∈ F . Thus, having observed a
video image Z, the observation likelihood for a hypothesis X = (α, i), is given
by

p(Z|X) ≡ p(Z|α, i)

∝ z exp− 1
2σ2

d(Z, Tα{fi}) , (2)

Eq. (2) computes the probability that the observation Z shows the face of an
individual i, while the face fi undergoes the transformation α. Here, d(·, ·) is a
suitable distance function. In face recognition, one usually deals with the inner
face region of the subject, rather than the entire image. We therefore interpret
Eq. (2) such that Tα{fi} is compared to a subimage of Z where the position
and scale of the subimage is specified by α. If A is the set of affine deformation,
our-of-plane rotation cannot be modeled adequately. Such transformations have
to be coped with in a different manner. To do so, we use as the distance function
d the eigen light-fields, that will be introduced in the next section.
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Fig. 1. Left image: An illustration of the 2D light-field of a 2D object [10]. The object
is conceptually placed within a circle. The angle to the viewpoint v around the circle is
measured by the angle θ, and the direction that the viewing ray makes with the radius
of the circle is denoted φ. For each pair of angles θ and φ, the radiance of light reaching
the viewpoint from the object is then denoted by L(θ, φ), the light-field. Although the
light-field of a 3D object is actually 4D, we will continue to use the 2D notation of
this figure in this paper for ease of explanation. Right image: The 1D image of a 2D
object corresponds to a curve (surface for a 2D image of a 3D object) in the light-field.
Each pixel in the image corresponds to a ray in space through the camera pinhole and
the location of the pixel on the image plane. In general this ray intersects the light-field
circle at a different point for each pixel. As the pixel considered “moves” in the image
plane, the point on the light-field circle therefore traces out a curve in θ-φ space. This
curve is a straight vertical line iff the “effective pinhole” of the camera lies on the circle
used to define the light-field.

3 Appearance-based 3-D Representation with Eigen
Light-Fields

3.1 Object Light-Fields

The plenoptic function [1] or light-field [10] is a function which specifies the
radiance of light in free space. It is a 5D function of position (3D) and orientation
(2D). In addition, it is also sometimes modeled as a function of time, wavelength,
and polarization, depending on the application in mind. Assuming that there is
no absorption or scattering of light through the air [14], the light-field is actually
only a 4D function, a 2D function of position defined over a 2D surface, and a 2D
function of direction [3; 10]. In 2D, the light-field of a 2D object is actually 2D
rather, than the 3D that might be expected. See Figure 1,left, for an illustration.

3.2 Eigen Light-Fields
Suppose we are given a collection of light-fields Li(θ, φ) where i = 1, . . . , N .
See Figure 1,left, for the definition of this notation. If we perform an eigen-
decomposition of these vectors using Principal Components Analysis (PCA), we
obtain d ≤ N eigen light-fields Ei(θ, φ) where i = 1, . . . , d. Then, assuming that
the eigen-space of light-fields is a good representation of the set of light-fields
under consideration, we can approximate any light-field L(θ, φ) as:

L(θ, φ) ≈
d∑

i=1

λiEi(θ, φ) (3)

where λi = 〈L(θ, φ), Ei(θ, φ)〉 is the inner (or dot) product between L(θ, φ)
and Ei(θ, φ). This decomposition is analogous to that used in face and object
recognition [19; 13]; it is just performed on the entire light-field rather than on
images.



3.3 Estimating Light-Fields from Images

Capturing the complete light-field of an object is a difficult task, primarily be-
cause it requires a huge number of images [3; 10]. In most object recognition
scenarios it is unreasonable to expect more than a few images of the object;
often just one. As shown in Figure 1, right, however, any image of the object
corresponds to a curve (for 3D objects, a surface) in the light-field. One way to
look at this curve is as a highly occluded light-field; only a very small part of
the light-field is visible.

It was argued in [4] that the eigen coefficients λi can be estimated from such
an occluded view. An algorithm used in [4] solves for λi as the least squares
solution of:

L(θ, φ)−
d∑

i=1

λiEi(θ, φ) = 0 (4)

where there is one such equation for each pair of θ and φ that are un-occluded
in L(θ, φ). Assuming that L(θ, φ) lies completely within the eigen-space and that
enough pixels are un-occluded, then the solution of Equation (4) will be exactly
the same as that obtained using the inner product [4].

Since there are d unknowns (λ1 . . . λd) in Equation (4), at least d un-occluded
light-field pixels are needed to over-constrain the problem, but more may be
required due to linear dependencies between the equations. In practice, 2 − 3
times as many equations as unknowns are typically required to get a reasonable
solution [9]. Given an image I(m,n), the following is then an algorithm for
estimating the eigen light-field coefficients λi:

Algorithm 1: Eigen Light-Field Estimation

1. For each pixel (m,n) in I(m,n) compute the corresponding light-field angles
θm,n and φm,n.

2. Find the least-squares solution (for λ1 . . . λd) to the set of equations:

I(m,n)−
d∑

i=1

λiEi(θm,n, φm,n) = 0 (5)

where m and n range over their allowed values.

Although we have described this algorithm for a single image I(m,n), any num-
ber of images can obviously be used. The extra pixels from the other images
are simply added in as additional constraints on the unknown coefficients λi in
Equation (5). Algorithm 1 can be used to estimate a light-field from a collection
of images. Once the light-field has been estimated, it can then be used to ren-
der new images of the same object under different poses (See also [20]). It was
shown in [4] that the algorithm correctly re-renders a given object assuming a
Lambertian reflectance model.

4 Tracking and Recognizing in Video

In this section we discuss the recognition of individuals in videos. After the
generation of ELFs from the image sets Vi in the previous section, we have a
vector of eigen values for each individual i ∈ N in the Gallery V.



4.1 Tracking and Recognition in the Bayesian Framework
We can now compute the observation likelihoods as in Eq. 2 and we can track
and identify individuals in the video: Let Xt = (αt, it) ∈ A × N be a random
variable. We want to find Xt such that the joint distribution

p(Xt|Z1, . . . , Zt) (6)

is maximal. Using the classical Bayesian propagation over time, we get

p(Xt|Z1, Z2, . . . , Zt) ≡ pt(αt, it)

=
∑

it−1

∫

αt−1

p(Zt|αt, it)p(αt, it|αt−1, it−1)pt−1(αt−1, it−1) . (7)

Marginalizing the posterior over the possible transformations α ∈ A we get a
probability mass function for the identity:

p(it|Z1, . . . , Zt) =
∫

αt

p(αt, it|Z1, . . . , Zt) . (8)

Maximizing (8) leads to the desired identity.
In Eq. (7)

p(Xt|Xt−1) ≡ p(αt, it|αt−1, it−1)

defines the probability of the state variable to change from Xt−1 to Xt. The
transformation αt may change according to a dynamic model. The identity i,
however, is assumed to be constant over time, i.e., it is assumed that the identity
of the tracked person does not change over time. Learning of a dynamic model
has been discussed in [18].

We have used a particle method to efficiently compute pt(it, αt|Zt) [23; 2; 6;
7; 11], where it, αt depicts the hypothesised identity and transformation of the
individual in the video. In [6] only the transformation αt was estimated, in [23]
the special case was discussed where each individual is presented by only a single
exemplar. In [8] this was generalized to the case of several exemplars for each
individual. Since the ELFs offer a common 3-D representation for each face, we
use the more efficient particle method of [23].

5 Experiments
We used the CMU PIE database [16] as the training set to build eigen light-
fields for our experiments and as part of the gallery. The database consists of
68 subjects. The images were preprocessed as explained in [4] and were then
downsampled to a height of 38 pixels. In Fig. 2 the set of available views in the
training set is shown. For testing we have used CMU Mobo Database [5]. We
needed to select a subset of 6 individuals and 20 videos as the facial views in
the remaining videos were not consistent with the 3-D model as defined by the
eigen light-fields: in those videos, the individuals looked either up or down, a
pose which was not modeled by our ELFs (see Fig. 2 for the possible views). We
therefore extracted manually the inner face regions from the selected 20 videos of
the individuals for additional training. The complete Gallery therefore consisted
of 74 individuals (6 from the MoBo database and 68 from the PIE database).
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Fig. 2. The pose variation in the PIE database [17]. The pose varies from full left
profile (c34) to full frontal (c27) and on to full right profile (c22). The 9 cameras in
the horizontal sweep are each separated by about 22.5◦. The 4 other cameras include
1 above (c09) and 1 below (c07) the central camera, and 2 in the corners of the room
(c25 and c31), typical locations for surveillance cameras.

Between two and four face images were extracted from the videos of each of the
6 individuals. The face images had a height of between 30 and 38 pixels. Smaller
images were scaled to a consistent hight of 38 pixels. Using a small number of
low-resolution video images results in quite noisy eigenvectors that can hardly
be used for recognition based on still images (see below).

The video sequences in the MoBo database show the individuals walking on
a tread-mill. Different walking styles were used to assure a variety of conditions
that are likely to appear in real life: slow walk, fast walk, incline walk and walking
while carrying a ball. Therefore, four videos per person are available. During the
recording of the videos the illumination conditions were not altered. Each video
consists of 300 frames (480× 640 pixels per frame) captured at 30 Hz.

Some example images of the videos (slowWalk) are shown in Fig. 3.

Fig. 3. The figure shows example images of one of the videos (slowWalk).

The inner face regions in these videos are between 30×30 and 40×40 pixels.
During testing, the ELFs were used to compute, over time, the posteriori

probabilities pt(it|Zt). It is interesting to see, how the posteriori probabilities
develop over time. Examples for this can be seen in Fig. 5. The dashed line
refers to the correct hypothesized identity, the other five curves refer to the
probabilities of the top matching identities other than the true one. One can
see, that the dashed line (true hypothesis) increases quickly to one.
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Fig. 4. The figure shows how the posterior
probabilities pt(it|Zt) develop over time.
The dashed curve refers to the correct hy-
pothesis. The y-axis refers to the believe
that at a given time t a given hypothesis
is the correct one.

Of the 20 videos tested, recognition was successful in 13 cases, i.e. the true
hypothesis had maximal probability after convergence. In 4 cases, the true hy-
pothesis was the second highest probability during the evidence integration pro-
cess, i.e. in 17 cases the true hypothesis was among the top two matches. In the
remaining three videos, recognition failed. After an average time of 15 frames
the particle method had converged.

We also tested the recognition without evidence integration: Testing on all
single images of the videos, recognition only succeeded in two cases. This shows
the importance of evidence integration for recognition when dealing with noisy
observations.

Video images from our test data were converted from color to gray value
images, but no further processing was done. The set of deformations A included
scale and translation. Shear and rotation were not considered.

Top matches 13 (out of 20)
Second best matches 4 (out of 20)
still-to-still 2 (out of 1500)

Table 1. The Table summarizes the recognition
results: In 13 out of twenty videos the individu-
als were correctly identified. In four out of twenty,
the correct match was only the second best match.
Applying the ELF approach without evidence in-
tegration lead to 2 correct matches on all images
of the videos.

6 Conclusion

In this paper we presented a novel approach for appearance based face recogni-
tion across pose. We used eigen light-fields to build a 3-D model of faces. The
advantage of ELFs is that once a 3-D model is built from a generic training set,
one only needs two to four views of a new and before unseen face to be able to
recognize this face from a new and previously unseen view.

This property has been shown in [4] with a large number of experiments.
In [4], however, the face sets consisted of high resolution images and the faces
did not show any facial expressions. In this paper we examined how this method
scales to face images as small as 30× 38 pixels with strong variations in appear-
ance due to facial expressions. The resulting noisy feature vectors could not have
been used for still-to-still recognition. We solved this problem by integrating the
evidence of identity over time by applying Bayesian propagation [8]. Using this
approach, experiments showed more stable recognition results.

As it is difficult to draw general conclusions from a database of only 20 videos,
we currently evaluate our approach on 40 newly recorded sequences.
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