Skip to main content

Efficient Unbound Docking of Rigid Molecules

  • Conference paper
  • First Online:
Book cover Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

We present a new algorithm for unbound (real life) docking of molecules, whether protein-protein or protein-drug. The algorithm carries out rigid docking, with surface variability/flexibility implicitly addressed through liberal intermolecular penetration. The high efficiency of the algorithm is the outcome of several factors: (i) focusing initial molecular surface fitting on localized, curvature based surface patches; (ii) use of Geometric Hashing and Pose Clustering for initial transformation detection; (iii) accurate computation of shape complementarity utilizing the Distance Transform; (iv) efficient steric clash detection and geometric fit scoring based on a multi-resolution shape representation; and (v) utilization of biological information by focusing on hot spot rich surface patches. The algorithm has been implemented and applied to a large number of cases.

To whom correspondence should be addressed

The publisher or recipient acknowledges right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing, Inc., New York and London, 1991.

    Google Scholar 

  2. J.C. Camacho, D.W. Gatchell, S.R. Kimura, and S. Vajda. Scoring docked conformations generated by rigid body protein-protein docking. PROTEINS: Structure, Function and Genetics, 40:525–537, 2000.

    Article  Google Scholar 

  3. R. Chen and Z Weng. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. PROTEINS: Structure, Function and Genetics, 47:281–294, 2002.

    Article  Google Scholar 

  4. M.L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst., 16:548–558, 1983.

    Article  Google Scholar 

  5. M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709–713, 1983.

    Article  Google Scholar 

  6. M.L. Connolly. Shape complementarity at the hemoglobin αβ1 subunit interface. Biopolymers, 25:1229–1247, 1986.

    Article  Google Scholar 

  7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, chapter 26. The MIT Press, 1990.

    Google Scholar 

  8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, 2000.

    Google Scholar 

  9. T.J.A. Ewing, Makino S., Skillman A.G., and I.D. Kuntz. Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Computer-Aided Molecular Design, 15:411–428, 2001.

    Article  Google Scholar 

  10. D. Fischer, S. L. Lin, H.J. Wolfson, and R. Nussinov. A geometry-based suite of molecular docking processes. J. Mol. Biol., 248:459–477, 1995.

    Google Scholar 

  11. H.A. Gabb, R.M. Jackson, and J.E. Sternberg. Modelling protein docking using shape complementarity, electrostatics, and biochemical information. J. Mol. Biol., 272:106–120, 1997.

    Article  Google Scholar 

  12. E.J. Gardiner, P. Willett, and P.J. Artymiuk. Protein docking using a genetic algorithm. PROTEINS: Structure, Function and Genetics, 44:44–56, 2001.

    Article  Google Scholar 

  13. B.B. Goldman and W.T. Wipke. Molecular docking using quadratic shape descriptors (qsdock). PROTEINS: Structure, Function and Genetics, 38:79–94, 2000.

    Article  Google Scholar 

  14. I. Halperin, B. Ma, H. Wolfson, and R. Nussinov. Principles of docking: An overview of search algorithms and a guide to scoring functions. PROTEINS: Structure, Function and Genetics, 47:409–443, 2002.

    Article  Google Scholar 

  15. Z. Hu, B. Ma, H.J Wolfson, and R. Nussinov. Conservation of polar residues as hot spots at protein-protein interfaces. PROTEINS: Structure, Function and Genetics, 39:331–342, 2000.

    Article  Google Scholar 

  16. R.M. Jackson. Comparison of protein-protein interactions in serine protease-inhibitor and antibody-antigen complexes: Implications for the protein docking problem. Protein Science, 8:603–613, 1999.

    Article  Google Scholar 

  17. F. Jiang and S.H. Kim. Soft docking: Matching of molecular surface cubes. J. Mol. Biol., 219:79–102, 1991.

    Article  Google Scholar 

  18. G. Jones, P. Willet, R. Glen, and Leach. A.R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 267:727–748, 1997.

    Article  Google Scholar 

  19. E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A.A. Friesem, C. Aflalo, and I.A. Vakser. Molecular Surface Recognition: Determination of Geometric Fit between Protein and their Ligands by Correlation Techniques. Proc. Natl. Acad. Sci. USA, 89:2195–2199, 1992.

    Google Scholar 

  20. I.D. Kuntz, J.M. Blaney, S.J. Oatley, R. Langridge, and T.E. Ferrin. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 161:269–288, 1982.

    Article  Google Scholar 

  21. H.P. Lenhof. Parallel protein puzzle: A new suite of protein docking tools. In Proc. of the First Annual International Conference on Computational Molecular Biology RECOMB 97, pages 182–191, 1997.

    Google Scholar 

  22. S. L. Lin, R. Nussinov, D. Fischer, and H.J. Wolfson. Molecular surface representation by sparse critical points. PROTEINS: Structure, Function and Genetics, 18:94–101, 1994.

    Article  Google Scholar 

  23. R. Norel, S. L. Lin, H.J. Wolfson, and R. Nussinov. Shape complementarity at protein-protein interfaces. Biopolymers, 34:933–940, 1994.

    Article  Google Scholar 

  24. R. Norel, S. L. Lin, H.J. Wolfson, and R. Nussinov. Molecular surface complementarity at protein-protein interfaces: The critical role played by surface normals at well placed, sparse points in docking. J. Mol. Biol., 252:263–273, 1995.

    Article  Google Scholar 

  25. R. Norel, D. Petrey, H.J. Wolfson, and R. Nussinov. Examination of shape complementarity in docking of unbound proteins. PROTEINS: Structure, Function and Genetics, 35:403–419, 1999.

    Google Scholar 

  26. P.N. Palma, L. Krippahl, J.E. Wampler, and J.G Moura. Bigger: A new (soft)docking algorithm for predicting protein interactions. PROTEINS: Structure, Function and Genetics, 39:372–384, 2000.

    Article  Google Scholar 

  27. M. Rarey, B. Kramer, and Lengauer T. Time-efficient docking of flexible ligands into active sites of proteins. In 3’rd Int. Conf. on Intelligent Systems for Molecular Biology (ISMB’95), pages 300–308, Cambridge, UK, 1995. AAAI Press.

    Google Scholar 

  28. B. Sandak, H.J. Wolfson, and R. Nussinov. Flexible docking allowing induced fit in proteins. PROTEINS: Structure, Function and Genetics, 32:159–174, 1998.

    Article  Google Scholar 

  29. G. Stockman. Object recognition and localization via pose clustering. J. of Computer Vision, Graphics, and Image Processing, 40(3):361–387, 1987.

    Article  Google Scholar 

  30. I.A. Vakser. Protein docking for low resolution structures. Protein Engineering, 8:371–377, 1995.

    Article  Google Scholar 

  31. I.A. Vakser. Main chain complementarity in protein recognition. Protein Engineering, 9:741–744, 1996.

    Article  Google Scholar 

  32. I.A. Vakser, O.G. Matar, and C.F. Lam. A systematic study of low resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA, 96:8477–8482, 1999.

    Google Scholar 

  33. P.H. Walls and J.E. Sternberg. New algorithms to model protein-protein recognition based on surface complementarity; applications to antibody-antigen docking. J. Mol. Biol., 228:227–297, 1992.

    Article  Google Scholar 

  34. H.J. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE Computational Science and Eng., 11:263–278, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duhovny, D., Nussinov, R., Wolfson, H.J. (2002). Efficient Unbound Docking of Rigid Molecules. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics