Skip to main content

MultiProt — A Multiple Protein Structural Alignment Algorithm

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

We present a fully automated highly efficient technique which detects the multiple structural alignments of protein structures. Our method, MultiProt, finds the common geometrical cores between the input molecules. To date, only few methods were developed to tackle the structural multiple alignment problem. Most of them require that all the input molecules be aligned, while our method does not require that all the input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules from the input. To demonstrate the power of the presented method we provide a number of experimental results performed by the implemented program. Along with the known multiple alignments of protein structures, we present new multiple structural alignment results of protein families from the All beta proteins class in the SCOP classification.

To whom correspondence should be addressed

The publisher or recipient acknowledges right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Akutsu and M. M. Halldorson. On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science, 233:33–50, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Bashford, C. Chothia, and A.M. Lesk. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol., 196(1):199–216, 1987.

    Article  Google Scholar 

  3. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry-Algorithms and Applications. Springer-Verlag, 2000.

    Google Scholar 

  4. Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and related problems. Algorithmica, 31(1):1–28, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Eidhammer, I. Jonassen, and WR. Taylor. Structure Comparison and Structure Patterns. J Comput Biol., 7(5):685–716, 2000.

    Article  Google Scholar 

  6. D. Fischer, A. Elofsson, D. Rice, and D. Eisenberg. Assessing the performance of fold recognition methods by means of a comprehensive benchmark. In L. Hunter and T. Klein, editors, In Proc. Pacific Symposium on Biocomputing, Singapore, 1996. World Scientific Press.

    Google Scholar 

  7. D. Fischer, S. L. Lin, H.J. Wolfson, and R. Nussinov. A Geometry-based Suite of Molecular Docking Processes. J. Mol. Biol., 248:459–477, 1995.

    Google Scholar 

  8. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.

    Google Scholar 

  9. L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. J. Mol. Biol., 233(1):123–38, 1993.

    Article  Google Scholar 

  10. W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr., A32:922–923, 1978.

    Google Scholar 

  11. TK. Kaindl and B. Steipe. Metric properties of the root-mean-square deviation of vector sets. Acta Cryst., A53:809, 1997.

    Google Scholar 

  12. N. Leibowitz, Z.Y. Fligelman, R. Nussinov, and H.J. Wolfson. Automated multiple structure alignment and detection of a common substructural motif. Proteins, 43(3):235–45, 2001.

    Article  Google Scholar 

  13. N. Leibowitz, R. Nussinov, and H.J. Wolfson. MUSTA-a general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins. J Comput Biol., 8(2):93–121, 2001.

    Article  Google Scholar 

  14. C. Lemmen and T. Lengauer. Computational methods for the structural alignment of molecules. J Comput Aided Mol Des, 14(3):215–32, March 2000.

    Article  Google Scholar 

  15. T. Madej, J. Gibrat, and S. Bryant. Threading a database of protein cores, 1995.

    Google Scholar 

  16. K. Mehlhorn. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999.

    Google Scholar 

  17. E.M. Mitchel, P.J. Artymiuk, D.W. Rice, and P. Willet. Use of Techniques Derived from Graph Theory to Compare Secondary Structure Motifs in Proteins. J. Mol. Biol., 212:151–166, 1989.

    Article  Google Scholar 

  18. A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247:536–540, 1995.

    Article  Google Scholar 

  19. R. Nussinov and H.J. Wolfson. Efficient Detection of three-dimensional strcutral motifs in biological macromolecules by computer vision techniques. Proc. Natl. Acad. Sci. USA, 88:10495–10499, December 1991. Biophysics.

    Google Scholar 

  20. C.A. Orengo and W.R. Taylor. SSAP: Sequential Structure Alignment Program for Protein Structure Comparison. In R.F. Doolitle, editor, Methods in Enzymology, Vol. 266, pages 617–635. Academic Press, San Diego, 1996.

    Google Scholar 

  21. J.-R. Sack and J. Urrutia. Handbook of Computational Geometry (chapter: Discrete Geometric Shapes: Matching, Interpolation, and Approximation). Elsevier, 2000.

    Google Scholar 

  22. B. Sandak, R. Nussinov, and H.J. Wolfson. An Automated Robotics-Based Technique for Biomolecular Docking and Matching allowing Hinge-Bending Motion. Computer Applications in the Biosciences (CABIOS), 11:87–99, 1995.

    Google Scholar 

  23. M. Shatsky, Z.Y. Fligelman, R. Nussinov, and H.J Wolfson. Alignment of Flexible Protein Structures. In 8th International Conference on Intelligent Systems for Molecular Biology, pages 329–343. The AAAI press, August 2000.

    Google Scholar 

  24. M. Shatsky, H.J Wolfson, and R. Nussinov. Flexible protein alignment and hinge detection. Proteins: Structure, Function, and Genetics, 48:242–256, 2002.

    Article  Google Scholar 

  25. I. Shindyalov and P. Bourne. Protein structure alignment by incremental combinatorial extension (ce) of the optimal path. Protein Engineering, 11(9):739–747, 1998.

    Article  Google Scholar 

  26. W. R. Taylor and C. A. Orengo. Protein structure alignment. J. Mol. Biol., 208:1–22, 1989.

    Article  Google Scholar 

  27. G. Vriend and C. Sander. Detection of Common Three-Dimensional Substructures in Proteins. Proteins, 11:52–58, 1991.

    Article  Google Scholar 

  28. T.D. Wu, S.C. Schmidler, and T. Hastie. Regression analysis of multiple protein structures. J Comput Biol, 5(3):585–595, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shatsky, M., Nussinov, R., Wolfson, H.J. (2002). MultiProt — A Multiple Protein Structural Alignment Algorithm. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics